The molecular origins of the mechanical properties of fibrin

被引:61
作者
Falvo, Michael R. [2 ]
Gorkun, Oleg V. [1 ]
Lord, Susan T. [1 ]
机构
[1] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Fibrinogen; Fibrin clots; Viscoelasticity; Mechanical properties; Molecular mechanisms; ALPHA-C-DOMAIN; B-B INTERACTIONS; ELECTRON-MICROSCOPY; FORCE SPECTROSCOPY; STRESS-RELAXATION; ELASTIC PROTEINS; POLYMERIZATION; FIBERS; CLOT; RHEOLOGY;
D O I
10.1016/j.bpc.2010.08.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
When normal blood circulation is compromised by damage to vessel walls, clots are formed at the site of injury. These clots prevent bleeding and support wound healing. To sustain such physiological functions, clots are remarkably extensible and elastic. Fibrin fibers provide the supporting framework of blood clots, and the properties of these fibers underlie the mechanical properties of clots. Recent studies, which examined individual fibrin fibers or cylindrical fibrin clots, have shown that the mechanical properties of fibrin depend on the mechanical properties of the individual fibrin monomers. Within the fibrin monomer, three structures could contribute to these properties: the coiled-coil connectors the folded globular nodules and the relatively unstructured alpha C regions. Experimental data suggest that each of these structures contributes. Here we review the recent work with a focus on the molecular origins of the remarkable biomechanical properties of fibrin clots. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 58 条
[1]   Complexity of "A-a" knob-hole fibrin interaction revealed by atomic force spectroscopy [J].
Averett, Laurel E. ;
Geer, Carri B. ;
Fuierer, Ryan R. ;
Akhremitchev, Boris B. ;
Gorkun, Oleg V. ;
Schoenfisch, Mark H. .
LANGMUIR, 2008, 24 (09) :4979-4988
[2]  
Averett LE, 2009, BIOPHYS J, V97, P2820, DOI [10.1016/j.bpj.2009.08.042, 10.1016/j.bpj.2009.0X.042]
[3]   Impaired Protofibril Formation in Fibrinogen γN308K Is Due to Altered D:D and "A:a" Interactions [J].
Bowley, Sheryl R. ;
Okumura, Nobuo ;
Lord, Susan T. .
BIOCHEMISTRY, 2009, 48 (36) :8656-8663
[4]   Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM [J].
Brown, Andre E. X. ;
Litvinov, Rustem I. ;
Discher, Dennis E. ;
Weisel, John W. .
BIOPHYSICAL JOURNAL, 2007, 92 (05) :L39-L41
[5]   Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water [J].
Brown, Andre E. X. ;
Litvinov, Rustem I. ;
Discher, Dennis E. ;
Purohit, Prashant K. ;
Weisel, John W. .
SCIENCE, 2009, 325 (5941) :741-744
[6]   Nature designs tough collagen: Explaining the nanostructure of collagen fibrils [J].
Buehler, Markus J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (33) :12285-12290
[7]   Identification of an ordered compact structure within the recombinant bovine fibrinogen αC-domain fragment by NMRT [J].
Burton, RA ;
Tsurupa, G ;
Medved, L ;
Tjandra, N .
BIOCHEMISTRY, 2006, 45 (07) :2257-2266
[8]   NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen αC-domain fragment [J].
Burton, Robert A. ;
Tsurupa, Galina ;
Hantgan, Roy R. ;
Tjandra, Nico ;
Medved, Leonid .
BIOCHEMISTRY, 2007, 46 (29) :8550-8560
[9]   The elasticity of α-helices -: art. no. 244912 [J].
Choe, S ;
Sun, SX .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (24)
[10]   The αC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis [J].
Collet, JP ;
Moen, JL ;
Veklich, YI ;
Gorkun, OV ;
Lord, ST ;
Montalescot, G ;
Weisel, JW .
BLOOD, 2005, 106 (12) :3824-3830