Fixed Point Theorems for Zθ-Contraction and Applications to Nonlinear Integral Equations

被引:8
作者
Li, Xiangling [1 ]
Hussain, Azhar [2 ]
Adeel, Muhammad [2 ]
Savas, Ekrem [3 ]
机构
[1] Hebei Univ Architecture, Dept Math & Phys, Zhangjiakou 075024, Peoples R China
[2] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[3] Usak Univ, Dept Math, TR-64000 Usak, Turkey
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Simulation functions; theta-contraction; integral equations; BANACH-CACCIOPPOLI TYPE; CONTRACTION PRINCIPLE;
D O I
10.1109/ACCESS.2019.2933693
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to define a new contractive type mapping called Z(theta)-contraction and prove some fixed point and Suzuki type fixed point results in the context of complete metric spaces for such contraction and present some examples of the obtained results for illustration. Moreover, we present an application for the existence of a solution of certain nonlinear integral equations.
引用
收藏
页码:120023 / 120029
页数:7
相关论文
共 22 条
  • [1] Abbas M, 2016, J NONLINEAR SCI APPL, V9, P6077
  • [2] Fixed point results for generalized Θ-contractions
    Ahmad, Jamshaid
    Al-Mazrooei, Abdullah E.
    Cho, Yeol Je
    Yang, Young-Oh
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2350 - 2358
  • [3] Banach S., 1922, Fund. Maths., V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
  • [4] ON NONLINEAR CONTRACTIONS
    BOYD, DW
    WONG, JSW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) : 458 - &
  • [5] Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
  • [6] Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations
    Cherichi, Meryam
    Samet, Bessem
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012, : 1 - 19
  • [7] Jachymski J, 2008, P AM MATH SOC, V136, P1359
  • [8] A new generalization of the Banach contraction principle
    Jleli, Mohamed
    Samet, Bessem
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [9] Karap~nar E., 2016, Filomat, V30, P2343, DOI DOI 10.2298/FIL1608343K
  • [10] A New Approach to the Study of Fixed Point Theory for Simulation Functions
    Khojasteh, Farshid
    Shukla, Satish
    Radenovic, Stojan
    [J]. FILOMAT, 2015, 29 (06) : 1189 - 1194