Approximating eigenvalues of Dirac system with discontinuities at several points using Hermite-Gauss method

被引:5
作者
Asharabi, Rashad M. [1 ]
Tharwat, Mohammed M. [2 ,3 ]
机构
[1] Najran Univ, Dept Math, Coll Arts & Sci, Najran, Saudi Arabia
[2] Univ Jeddah, Dept Math, Fac Sci, Jeddah, Saudi Arabia
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
关键词
Sinc methods; Dirac system; Error estimates; Convergence rate; STURM-LIOUVILLE PROBLEMS;
D O I
10.1007/s11075-017-0275-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hermite-Gauss sampling method is established to approximate the eigenvalues of the continuous Sturm-Liouville problems in 2016. In the present paper, we apply this method to approximate the eigenvalues of the Dirac system with transmission conditions at several points of discontinuity. This method gives us a higher accuracy results in comparison with the results of other sampling methods (classical sinc, regularized sinc, Hermite, sinc-Gaussian). The error of this method decays exponentially in terms of number of involved samples. Illustrative examples have been discussed to show the effectiveness of the presented method. We compare our results with the results of sinc-Gaussian sampling method which was the best sampling method before the presented method.
引用
收藏
页码:655 / 673
页数:19
相关论文
共 17 条
[1]   A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils [J].
Annaby, M. H. ;
Tharwat, M. M. .
APPLIED NUMERICAL MATHEMATICS, 2013, 63 :129-137
[2]  
Annaby M. H., 2008, Sampling Theory in Signal and Image Processing, V7, P293
[3]   Computing eigenvalues of Sturm-Liouville problems by Hermite interpolations [J].
Annaby, Mahmoud H. ;
Asharabi, Rashad M. .
NUMERICAL ALGORITHMS, 2012, 60 (03) :355-367
[4]  
[Anonymous], 1991, MATH ITS APPL SOVIET
[5]  
[Anonymous], TRANSLATION MTHEMATI
[6]   Generalized sinc-Gaussian sampling involving derivatives [J].
Asharabi, R. M. .
NUMERICAL ALGORITHMS, 2016, 73 (04) :1055-1072
[7]   A Modification of Hermite Sampling with a Gaussian Multiplier [J].
Asharabi, R. M. ;
Prestin, J. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (04) :419-437
[8]   A Hermite-Gauss method for the approximation of eigenvalues of regular Sturm-Liouville problems [J].
Asharabi, Rashad M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[9]  
Bhrawy A. H., NUMER ALGORITHMS, DOI [10.1155/2012/925134, DOI 10.1155/2012/925134]
[10]  
Boumenir A., 1996, Appl. Anal, V62, P323, DOI [10.1080/00036819608840486, DOI 10.1080/00036819608840486]