Low-Cost Robotic Guide Based on a Motor Imagery Brain-Computer Interface for Arm Assisted Rehabilitation

被引:16
作者
Quiles, Eduardo [1 ]
Suay, Ferran [2 ]
Candela, Gemma [2 ]
Chio, Nayibe [1 ,3 ]
Jimenez, Manuel
Alvarez-Kurogi, Leandro [4 ]
机构
[1] Univ Politecn Valencia, Inst Automat & Informat Ind, E-46022 Valencia, Spain
[2] Univ Valencia, Dept Psicobiol, Fac Psicol, Valencia 46010, Spain
[3] Univ Autonoma Bucaramanga, Fac Ingn, Ingn Mecatron, Bucaramanga 680003, Colombia
[4] Univ Int La Rioja, Fac Educ, Logrono 26006, Spain
关键词
robotic rehabilitation; robot-assisted therapy; brain computer interfaces in neurorehabilitation; EEG sensors; MOVEMENT; COMMUNICATION; STROKE; SYSTEM;
D O I
10.3390/ijerph17030699
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Motor imagery has been suggested as an efficient alternative to improve the rehabilitation process of affected limbs. In this study, a low-cost robotic guide is implemented so that linear position can be controlled via the user's motor imagination of movement intention. The patient can use this device to move the arm attached to the guide according to their own intentions. The first objective of this study was to check the feasibility and safety of the designed robotic guide controlled via a motor imagery (MI)-based brain-computer interface (MI-BCI) in healthy individuals, with the ultimate aim to apply it to rehabilitation patients. The second objective was to determine which are the most convenient MI strategies to control the different assisted rehabilitation arm movements. The results of this study show a better performance when the BCI task is controlled with an action-action MI strategy versus an action-relaxation one. No statistically significant difference was found between the two action-action MI strategies.
引用
收藏
页数:16
相关论文
共 55 条
[1]  
Allison BZ, 2010, HUM-COMPUT INT-SPRIN, P35, DOI 10.1007/978-1-84996-272-8_3
[2]  
Ang KK, 2009, IEEE ENG MED BIO, P5981, DOI 10.1109/IEMBS.2009.5335381
[3]  
[Anonymous], 2008, P INT WORKSH WEAR MI
[4]  
Bell I, 2004, P MIN UKACC CONTR BA
[5]   Neurophysiological predictor of SMR-based BCI performance [J].
Blankertz, Benjamin ;
Sannelli, Claudia ;
Haider, Sebastian ;
Hammer, Eva M. ;
Kuebler, Andrea ;
Mueller, Klaus-Robert ;
Curio, Gabriel ;
Dickhaus, Thorsten .
NEUROIMAGE, 2010, 51 (04) :1303-1309
[6]  
Candela G, 2018, PSYCHOL APPL DEV 4, P130
[7]   Analysis of mirror neuron system activation during action observation alone and action observation with motor imagery tasks [J].
Cengiz, Bulent ;
Vuralli, Doga ;
Zinnuroglu, Murat ;
Bayer, Gozde ;
Golmohammadzadeh, Hassan ;
Gunendi, Zafer ;
Turgut, Ali Emre ;
Irfanoglu, Bulent ;
Arikan, Kutluk Bilge .
EXPERIMENTAL BRAIN RESEARCH, 2018, 236 (02) :497-503
[8]   Brain-computer interfaces for communication and rehabilitation [J].
Chaudhary, Ujwal ;
Birbaumer, Niels ;
Ramos-Murguialday, Ander .
NATURE REVIEWS NEUROLOGY, 2016, 12 (09) :513-525
[9]  
Clerc M., 2016, Brain-Computer Interfaces 1: Methods and Perspectives
[10]   High-performance neuroprosthetic control by an individual with tetraplegia [J].
Collinger, Jennifer L. ;
Wodlinger, Brian ;
Downey, John E. ;
Wang, Wei ;
Tyler-Kabara, Elizabeth C. ;
Weber, Douglas J. ;
McMorland, Angus J. C. ;
Velliste, Meel ;
Boninger, Michael L. ;
Schwartz, Andrew B. .
LANCET, 2013, 381 (9866) :557-564