Representations of Homotopy Lie-Rinehart Algebras

被引:23
作者
Vitagliano, Luca [1 ,2 ]
机构
[1] Univ Salerno, DipMat, I-84084 Fisciano, SA, Italy
[2] GC Salerno, Ist Nazl Fis Nucl, I-84084 Fisciano, SA, Italy
关键词
GERSTENHABER ALGEBRAS; COHOMOLOGY; BRACKETS; DEFORMATIONS; CATEGORY;
D O I
10.1017/S0305004114000541
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I propose a definition of left/right connection along a strong homotopy Lie-Rinehart algebra. This allows me to generalise simultaneously representations up to homotopy of Lie algebroids and actions of L-infinity algebras on graded manifolds. I also discuss the Schouten-Nijenhuis calculus associated to strong homotopy Lie-Rinehart connections.
引用
收藏
页码:155 / 191
页数:37
相关论文
共 52 条
[1]   Representations up to homotopy of Lie algebroids [J].
Abad, Camilo Arias ;
Crainic, Marius .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 663 :91-126
[2]  
[Anonymous], 1976, Mathematical Phys. and Appl. Math.
[3]  
Bashkirov D., ARXIV14106432
[4]   Algebra of higher antibrackets [J].
Bering, K ;
Damgaard, PH ;
Alfaro, J .
NUCLEAR PHYSICS B, 1996, 478 (1-2) :459-503
[5]   On the category of Lie n-algebroids [J].
Bonavolonta, Giuseppe ;
Poncin, Norbert .
JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 :70-90
[6]  
Braun C., 2013, T MOSCOW MATH SOC, V74, P217
[7]   FROM L∞-ALGEBROIDS TO HIGHER SCHOUTEN/POISSON STRUCTURES [J].
Bruce, Andrew James .
REPORTS ON MATHEMATICAL PHYSICS, 2011, 67 (02) :157-177
[8]   Relative formality theorem and quantisation of coisotropic submanifolds [J].
Cattaneo, Alberto S. ;
Felder, Giovanni .
ADVANCES IN MATHEMATICS, 2007, 208 (02) :521-548
[9]   INTRODUCTION TO SUPERGEOMETRY [J].
Cattaneo, Alberto S. ;
Schaetz, Florian .
REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (06) :669-690
[10]  
CRAINIC M., ARXIVMATH0009229 EPR