Mapping RNA-RNA interactome and RNA structure in vivo by MARIO

被引:122
作者
Nguyen, Tri C. [1 ]
Cao, Xiaoyi [1 ]
Yu, Pengfei [1 ]
Xiao, Shu [1 ]
Lu, Jia [1 ]
Biase, Fernando H. [1 ]
Sridhar, Bharat [1 ]
Huang, Norman [1 ]
Zhang, Kang [2 ]
Zhong, Sheng [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, Powell Focht Bioengn Hall 384,9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Ophthalmol, La Jolla, CA 92093 USA
关键词
CROSS-LINKING; MESSENGER-RNA; NUCLEOTIDE-RESOLUTION; QUANTUM DOTS; CHROMATIN IMMUNOPRECIPITATION; WIDE IDENTIFICATION; RIBONUCLEIC-ACID; BINDING PROTEINS; GENE-REGULATION; NONCODING RNAS;
D O I
10.1038/ncomms12023
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The pervasive transcription of our genome presents a possibility of revealing new genomic functions by investigating RNA interactions. Current methods for mapping RNA-RNA interactions have to rely on an 'anchor' protein or RNA and often require molecular perturbations. Here we present the MARIO (Mapping RNA interactome in vivo) technology to massively reveal RNA-RNA interactions from unperturbed cells. We mapped tens of thousands of endogenous RNA-RNA interactions from mouse embryonic stem cells and brain. We validated seven interactions by RNA antisense purification and one interaction using single-molecule RNA-FISH. The experimentally derived RNA interactome is a scale-free network, which is not expected from currently perceived promiscuity in RNA-RNA interactions. Base pairing is observed at the interacting regions between long RNAs, including transposon transcripts, suggesting a class of regulatory sequences acting in trans. In addition, MARIO data reveal thousands of intra-molecule interactions, providing in vivo data on high-order RNA structures.
引用
收藏
页数:12
相关论文
共 69 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   miR-TRAP: A Benchtop Chemical Biology Strategy to Identify microRNA Targets [J].
Baigude, Huricha ;
Ahsanullah ;
Li, Zhonghan ;
Zhou, Ying ;
Rana, Tariq M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (24) :5880-5883
[3]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[4]   Scale-free networks [J].
Barabási, AL ;
Bonabeau, E .
SCIENTIFIC AMERICAN, 2003, 288 (05) :60-69
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   RNAstructure: web servers for RNA secondary structure prediction and analysis [J].
Bellaousov, Stanislav ;
Reuter, Jessica S. ;
Seetin, Matthew G. ;
Mathews, David H. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (W1) :W471-W474
[7]   Hi-C: A comprehensive technique to capture the conformation of genomes [J].
Belton, Jon-Matthew ;
McCord, Rachel Patton ;
Gibcus, Johan Harmen ;
Naumova, Natalia ;
Zhan, Ye ;
Dekker, Job .
METHODS, 2012, 58 (03) :268-276
[8]   A guided tour into subcellular colocalization analysis in light microscopy [J].
Bolte, S. ;
Cordelieres, F. P. .
JOURNAL OF MICROSCOPY, 2006, 224 (213-232) :213-232
[9]   Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs [J].
Brameier, Markus ;
Herwig, Astrid ;
Reinhardt, Richard ;
Walter, Lutz ;
Gruber, Jens .
NUCLEIC ACIDS RESEARCH, 2011, 39 (02) :675-686
[10]   System-wide identification of RNA-binding proteins by interactome capture [J].
Castello, Alfredo ;
Horos, Rastislav ;
Strein, Claudia ;
Fischer, Bernd ;
Eichelbaum, Katrin ;
Steinmetz, Lars M. ;
Krijgsveld, Jeroen ;
Hentze, Matthias W. .
NATURE PROTOCOLS, 2013, 8 (03) :491-500