In-plane and cross-plane thermal conductivities of molybdenum disulfide

被引:77
作者
Ding, Zhiwei [1 ]
Jiang, Jin-Wu [2 ]
Pei, Qing-Xiang [1 ]
Zhang, Yong-Wei [1 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
关键词
molybdenum disulfide; thermal conductivity; molecular dynamics; MOLECULAR-DYNAMICS; GRAPHENE; TRANSPORT; PHOTOLUMINESCENCE; PHOTOTRANSISTORS; RESISTANCE; STRAIN;
D O I
10.1088/0957-4484/26/6/065703
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS2) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS2 is about 19.76 W mK(-1). Interestingly, the in-plane thermal conductivity of multilayer MoS2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS2, which makes the phonon-phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS2 based nanodevices and for thermoelectric applications of MoS2.
引用
收藏
页数:9
相关论文
共 49 条
[41]   Stacking stability of MoS2 bilayer: An an initio study [J].
Tao Peng ;
Guo Huai-Hong ;
Yang Teng ;
Zhang Zhi-Dong .
CHINESE PHYSICS B, 2014, 23 (10)
[42]   Two-Dimensional Thermal Transport in Graphene: A Review of Numerical Modeling Studies [J].
Wang, Yan ;
Vallabhaneni, Ajit K. ;
Qiu, Bo ;
Ruan, Xiulin .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2014, 18 (02) :155-182
[43]   Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility [J].
Wei, Ning ;
Xu, Lanqing ;
Wang, Hui-Qiong ;
Zheng, Jin-Cheng .
NANOTECHNOLOGY, 2011, 22 (10)
[44]   Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene [J].
Wei, Xiaolin ;
Wang, Yongchun ;
Shen, Yulu ;
Xie, Guofeng ;
Xiao, Huaping ;
Zhong, Jianxin ;
Zhang, Gang .
APPLIED PHYSICS LETTERS, 2014, 105 (10)
[45]   In-plane lattice thermal conductivities of multilayer graphene films [J].
Wei, Zhiyong ;
Ni, Zhonghua ;
Bi, Kedong ;
Chen, Minhua ;
Chen, Yunfei .
CARBON, 2011, 49 (08) :2653-2658
[46]   Strain controlled thermomutability of single-walled carbon nanotubes [J].
Xu, Zhiping ;
Buehler, Markus J. .
NANOTECHNOLOGY, 2009, 20 (18)
[47]   Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy [J].
Yan, Rusen ;
Simpson, Jeffrey R. ;
Bertolazzi, Simone ;
Brivio, Jacopo ;
Watson, Michael ;
Wu, Xufei ;
Kis, Andras ;
Luo, Tengfei ;
Walker, Angela R. Hight ;
Xing, Huili Grace .
ACS NANO, 2014, 8 (01) :986-993
[48]   Molecular Dynamics Analysis of the Thermal Conductivity of Graphene and Silicene Monolayers of Different Lengths [J].
Yeo, J. J. ;
Ng, T. Y. ;
Liu, Z. S. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (08) :1790-1796
[49]   Single-Layer MoS2 Phototransistors [J].
Yin, Zongyou ;
Li, Hai ;
Li, Hong ;
Jiang, Lin ;
Shi, Yumeng ;
Sun, Yinghui ;
Lu, Gang ;
Zhang, Qing ;
Chen, Xiaodong ;
Zhang, Hua .
ACS NANO, 2012, 6 (01) :74-80