In-plane and cross-plane thermal conductivities of molybdenum disulfide

被引:77
作者
Ding, Zhiwei [1 ]
Jiang, Jin-Wu [2 ]
Pei, Qing-Xiang [1 ]
Zhang, Yong-Wei [1 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
关键词
molybdenum disulfide; thermal conductivity; molecular dynamics; MOLECULAR-DYNAMICS; GRAPHENE; TRANSPORT; PHOTOLUMINESCENCE; PHOTOTRANSISTORS; RESISTANCE; STRAIN;
D O I
10.1088/0957-4484/26/6/065703
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS2) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS2 is about 19.76 W mK(-1). Interestingly, the in-plane thermal conductivity of multilayer MoS2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS2, which makes the phonon-phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS2 based nanodevices and for thermoelectric applications of MoS2.
引用
收藏
页数:9
相关论文
共 49 条
[11]   Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity [J].
Hu, Ming ;
Poulikakos, Dimos .
NANO LETTERS, 2012, 12 (11) :5487-5494
[12]   Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study [J].
Huang, Wenxuan ;
Pei, Qing-Xiang ;
Liu, Zishun ;
Zhang, Yong-Wei .
CHEMICAL PHYSICS LETTERS, 2012, 552 :97-101
[13]   MoS2 nanoresonators: intrinsically better than graphene? [J].
Jiang, Jin-Wu ;
Park, Harold S. ;
Rabczuk, Timon .
NANOSCALE, 2014, 6 (07) :3618-3625
[14]   Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity [J].
Jiang, Jin-Wu ;
Park, Harold S. ;
Rabczuk, Timon .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (06)
[15]   Orientation Dependent Thermal Conductance in Single-Layer MoS2 [J].
Jiang, Jin-Wu ;
Zhuang, Xiaoying ;
Rabczuk, Timon .
SCIENTIFIC REPORTS, 2013, 3
[16]   Thermal conductance of graphene and dimerite [J].
Jiang, Jin-Wu ;
Wang, Jian-Sheng ;
Li, Baowen .
PHYSICAL REVIEW B, 2009, 79 (20)
[17]   Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect [J].
Jiang, JW ;
Qi, ZN ;
Park, HS ;
Rabczuk, T .
NANOTECHNOLOGY, 2013, 24 (43)
[18]   Basal-plane thermal conductivity of few-layer molybdenum disulfide [J].
Jo, Insun ;
Pettes, Michael Thompson ;
Ou, Eric ;
Wu, Wei ;
Shi, Li .
APPLIED PHYSICS LETTERS, 2014, 104 (20)
[19]   MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap [J].
Lee, Hee Sung ;
Min, Sung-Wook ;
Chang, Youn-Gyung ;
Park, Min Kyu ;
Nam, Taewook ;
Kim, Hyungjun ;
Kim, Jae Hoon ;
Ryu, Sunmin ;
Im, Seongil .
NANO LETTERS, 2012, 12 (07) :3695-3700
[20]   Strain effects on the thermal conductivity of nanostructures [J].
Li, Xiaobo ;
Maute, Kurt ;
Dunn, Martin L. ;
Yang, Ronggui .
PHYSICAL REVIEW B, 2010, 81 (24)