In-plane and cross-plane thermal conductivities of molybdenum disulfide

被引:77
作者
Ding, Zhiwei [1 ]
Jiang, Jin-Wu [2 ]
Pei, Qing-Xiang [1 ]
Zhang, Yong-Wei [1 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
关键词
molybdenum disulfide; thermal conductivity; molecular dynamics; MOLECULAR-DYNAMICS; GRAPHENE; TRANSPORT; PHOTOLUMINESCENCE; PHOTOTRANSISTORS; RESISTANCE; STRAIN;
D O I
10.1088/0957-4484/26/6/065703
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS2) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS2 is about 19.76 W mK(-1). Interestingly, the in-plane thermal conductivity of multilayer MoS2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS2, which makes the phonon-phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS2 based nanodevices and for thermoelectric applications of MoS2.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[2]   Effect of strain on the thermal conductivity of solids [J].
Bhowmick, Somnath ;
Shenoy, Vijay B. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (16)
[3]   Large and Tunable Photothermoelectric Effect in Single-Layer MoS2 [J].
Buscema, Michele ;
Barkelid, Maria ;
Zwiller, Val ;
van der Zant, Herre S. J. ;
Steele, Gary A. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2013, 13 (02) :358-363
[4]   Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 [J].
Cai, Yongqing ;
Lan, Jinghua ;
Zhang, Gang ;
Zhang, Yong-Wei .
PHYSICAL REVIEW B, 2014, 89 (03)
[5]   Strain Engineering of Kapitza Resistance in Few-Layer Graphene [J].
Chen, Jie ;
Walther, Jens H. ;
Koumoutsakos, Petros .
NANO LETTERS, 2014, 14 (02) :819-825
[6]   High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared [J].
Choi, Woong ;
Cho, Mi Yeon ;
Konar, Aniruddha ;
Lee, Jong Hak ;
Cha, Gi-Beom ;
Hong, Soon Cheol ;
Kim, Sangsig ;
Kim, Jeongyong ;
Jena, Debdeep ;
Joo, Jinsoo ;
Kim, Sunkook .
ADVANCED MATERIALS, 2012, 24 (43) :5832-5836
[7]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[8]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
[9]  
Gomez A. C., 2012, ADV MATER, V24, P772, DOI DOI 10.1002/adma.201103965
[10]   Graphene mediated thermal resistance reduction at strongly coupled interfaces [J].
Hu, Ming ;
Poulikakos, Dimos .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 62 :205-213