On irrationality exponents of generalized continued fractions

被引:6
作者
Hancl, Jaroslav
Leppala, Kalle
Matala-aho, Tapani
Torma, Topi
机构
基金
芬兰科学院;
关键词
Generalized continued fraction; q-Continued fraction; Irrationality exponent; Binary sequence; ALGEBRAIC-NUMBERS; COMPLEXITY;
D O I
10.1016/j.jnt.2014.09.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. We study how the asymptotic irrationality exponent of a given generalized continued fraction K-n=1(infinity) an/bn, an, bn is an element of Z(+) behaves as a function of growth properties of partial coefficient sequences (a(n)) and (b(n)). Video. For a video summary of this paper, please visit http://youtu.be/u5B2ItY9v28. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 35
页数:18
相关论文
共 18 条
  • [1] On the complexity of algebraic numbers I. Expansions in integer bases
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. ANNALS OF MATHEMATICS, 2007, 165 (02) : 547 - 565
  • [2] On the complexity of algebraic numbers, II. Continued fractions
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. ACTA MATHEMATICA, 2005, 195 (01) : 1 - 20
  • [3] [Anonymous], 2005, DIS MATH APPLICAT
  • [4] Polynomial continued fractions
    Bowman, D
    Mc Laughlin, J
    [J]. ACTA ARITHMETICA, 2002, 103 (04) : 329 - 342
  • [5] A THEOREM OF WHOLE FUNCTIONS AND IRRATIONAL EXPRESSIONS
    BUNDSCHUH, P
    [J]. INVENTIONES MATHEMATICAE, 1970, 9 (02) : 175 - +
  • [6] Bundschuh P., 1998, LITH MATH J, V38, p[19, 15]
  • [7] Euler L., 1737, COMM ACAD SCI PETR, V9, P1744
  • [8] Explicit irrationality measures for continued fractions
    Hancl, Jaroslav
    Leinonen, Marko
    Leppala, Kalle
    Matala-aho, Tapani
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (08) : 1758 - 1769
  • [9] On Tasoev's continued fractions
    Komatsu, T
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 1 - 12
  • [10] Komatsu T., 2005, LIET MAT RINK, V45, p[84, 66]