Dynamic Symmetry Breaking in Chiral Magnetic Systems

被引:7
作者
Brock, Jeffrey A. [1 ]
Kitcher, Michael D. [2 ]
Vallobra, Pierre [1 ,3 ]
Medapalli, Rajasekhar [1 ]
Li, Maxwell P. [2 ]
De Graef, Marc [2 ]
Riley, Grant A. [1 ]
Nembach, Hans T. [4 ]
Mangin, Stephane [3 ]
Sokalski, Vincent [2 ]
Fullerton, Eric E. [1 ]
机构
[1] Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA
[2] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[3] Univ Lorraine, Inst Jean Lamour, UMR CNRS, F-7198 Nancy, France
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
美国安德鲁·梅隆基金会;
关键词
chiral domain walls; Dzyaloshinskii-Moriya interactions; magnetic thin films; DOMAIN-WALLS; SKYRMIONS; DRIVEN; MOTION;
D O I
10.1002/adma.202101524
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Dzyaloshinskii-Moriya interaction (DMI) in magnetic systems stabilizes spin textures with preferred chirality, applicable to next-generation memory and computing architectures. In perpendicularly magnetized heavy-metal/ferromagnet films, the interfacial DMI originating from structural inversion asymmetry and strong spin-orbit coupling favors chiral Neel-type domain walls (DWs) whose energetics and mobility remain at issue. Here, a new effect is characterized in which domains expand unidirectionally in response to a combination of out-of-plane and in-plane magnetic fields, with the growth direction controlled by the in-plane field strength. These growth directionalities and symmetries with applied fields cannot be understood from static treatments alone. The authors theoretically demonstrate that perpendicular field torques stabilize steady-state magnetization profiles highly asymmetric in elastic energy, resulting in a dynamic symmetry breaking consistent with the experimental findings. This phenomenon sheds light on the mechanisms governing the dynamics of Neel-type DWs and expands the utility of field-driven DW motion to probe and control chiral DWs.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Measurement of interfacial Dzyaloshinskii-Moriya interaction from static domain imaging [J].
Agrawal, Parnika ;
Buttner, Felix ;
Lemesh, Ivan ;
Schlotter, Sarah ;
Beach, Geoffrey S. D. .
PHYSICAL REVIEW B, 2019, 100 (10)
[2]   Chiral magnetic order at surfaces driven by inversion asymmetry [J].
Bode, M. ;
Heide, M. ;
von Bergmann, K. ;
Ferriani, P. ;
Heinze, S. ;
Bihlmayer, G. ;
Kubetzka, A. ;
Pietzsch, O. ;
Bluegel, S. ;
Wiesendanger, R. .
NATURE, 2007, 447 (7141) :190-193
[3]   Tailoring the chirality of magnetic domain walls by interface engineering [J].
Chen, Gong ;
Ma, Tianping ;
N'Diaye, Alpha T. ;
Kwon, Heeyoung ;
Won, Changyeon ;
Wu, Yizheng ;
Schmid, Andreas K. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Magnetization reversal of Co/Pt multilayers: Microscopic origin of high-field magnetic irreversibility - art. no. 224434 [J].
Davies, JE ;
Hellwig, O ;
Fullerton, EE ;
Denbeaux, G ;
Kortright, JB ;
Liu, K .
PHYSICAL REVIEW B, 2004, 70 (22) :224434-1
[5]   A THERMODYNAMIC THEORY OF WEAK FERROMAGNETISM OF ANTIFERROMAGNETICS [J].
DZYALOSHINSKY, I .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1958, 4 (04) :241-255
[6]  
FERT A, 1989, MATER SCI FORUM, V59, P439
[7]  
Garcia J.P., 2020, ARXIV201209277
[8]   Neuromorphic spintronics [J].
Grollier, J. ;
Querlioz, D. ;
Camsari, K. Y. ;
Everschor-Sitte, K. ;
Fukami, S. ;
Stiles, M. D. .
NATURE ELECTRONICS, 2020, 3 (07) :360-370
[9]   Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in X|CoFeB|MgO heterostructures with a scanning NV magnetometer (X=Ta, TaN, and W) [J].
Gross, I. ;
Martinez, L. J. ;
Tetienne, J. -P. ;
Hingant, T. ;
Roch, J. -F. ;
Garcia, K. ;
Soucaille, R. ;
Adam, J. P. ;
Kim, J. -V. ;
Rohart, S. ;
Thiaville, A. ;
Torrejon, J. ;
Hayashi, M. ;
Jacques, V. .
PHYSICAL REVIEW B, 2016, 94 (06)
[10]  
Hartmann D.M.F., 2014, THESIS UTRECHT U