Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution

被引:13
作者
Fringes, Stefan [1 ]
Schwemmer, C. [1 ]
Rawlings, Colin D. [1 ]
Knoll, Armin W. [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Nanofluidics; nanofabrication; nanowires; nanoparticle assembly; OBJECTS; NANOWIRES; DEVICES; GLASS;
D O I
10.1021/acs.nanolett.9b03687
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate deposition of nanoparticles at defined positions on a substrate is still a challenging task, because it requires simultaneously stable long-range transport and attraction to the target site and precise short-range orientation and deposition. Here we present a method based on geometry-induced energy landscapes in a nanofluidic slit for particle manipulation: Brownian motors or electro-osmotic flows are used for particle delivery to the target area. At the target site, electrostatic trapping localizes and orients the particles. Finally, reducing the gap distance of the slit leads sequentially to a focusing of the particle position and a jump into adhesive contact by several nanometers. For 60 nm gold spheres, we obtain a placement accuracy of 8 nm. The versatility of the method is demonstrated further by a stacked assembly of nanorods and the directed deposition of InAs nanowires.
引用
收藏
页码:8855 / 8861
页数:7
相关论文
共 50 条
[31]   Ultrahigh-Density sub-10 nm Nanowire Array Formation via Surface-Controlled Phase Separation [J].
Tian, Yuan ;
Mukherjee, Pinaki ;
Jayaraman, Tanjore V. ;
Xu, Zhanping ;
Yu, Yongsheng ;
Tan, Li ;
Sellmyer, David. J. ;
Shield, Jeffrey E. .
NANO LETTERS, 2014, 14 (08) :4328-4333
[32]   Shaping sub-10 nm metallic nanogaps by laser shock-induced extreme plasticity [J].
He, Yali ;
Liu, Jian ;
Wang, Jian ;
Hu, Yaowu .
JOURNAL OF MANUFACTURING PROCESSES, 2024, 124 :805-817
[33]   Design and Deep Insights into Sub-10 nm Spacer Engineered Junctionless FinFET for Nanoscale Applications [J].
Sreenivasulu, Bharath, V ;
Vadthiya, Narendar .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2021, 10 (01)
[34]   Sub-10 nm Resistless Nano lithography for Directed Self-Assembly of Block Copolymers [J].
Fernandez-Regulez, Marta ;
Evangelio, Laura ;
Lorenzoni, Matteo ;
Fraxedas, Jordi ;
Perez-Murano, Francesc .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (23) :21596-21602
[35]   Self-organization and dewetting kinetics in sub-10 nm diblock copolymer line/space lithography [J].
Chevalier, Xavier ;
Pound-Lana, Gwenaelle ;
Gomes Correia, Cindy ;
Cavalaglio, Sebastien ;
Cabannes-Boue, Benjamin ;
Restagno, Frederic ;
Miquelard-Garnier, Guillaume ;
Roland, Sebastien ;
Navarro, Christophe ;
Fleury, Guillaume ;
Zelsmann, Marc .
NANOTECHNOLOGY, 2023, 34 (17)
[36]   Large-area, transferable sub-10 nm polymer membranes at the air-water interface [J].
Huang, Ya ;
Huang, Kai ;
Hussain, Naveed ;
Matsumoto, Hidetoshi ;
Wu, Hui .
NANO RESEARCH, 2018, 11 (07) :3833-3843
[37]   Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography [J].
Liang, Xiaogan ;
Jung, Yeon-Sik ;
Wu, Shiwei ;
Ismach, Ariel ;
Olynick, Deirdre L. ;
Cabrini, Stefano ;
Bokor, Jeffrey .
NANO LETTERS, 2010, 10 (07) :2454-2460
[38]   Optical Study of Sub-10 nm In0.3Ga0.7N Quantum Nanodisks in GaN Nanopillars [J].
Higo, Akio ;
Kiba, Takayuki ;
Chen, Shula ;
Chen, Yafeng ;
Tanikawa, Tomoyuki ;
Thomas, Cedric ;
Lee, Chang Yong ;
Lai, Yi-Chun ;
Ozaki, Takuya ;
Takayama, Junichi ;
Yamashita, Ichiro ;
Murayama, Akihiro ;
Samukawa, Seiji .
ACS PHOTONICS, 2017, 4 (07) :1851-1857
[39]   Fabrication of Sub-10 nm Planar Nanofluidic Channels Through Native Oxide Etch and Anodic Wafer Bonding [J].
Song, Chunrong ;
Wang, Pingshan .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010, 9 (02) :138-141
[40]   Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography [J].
Son, Jeong Gon ;
Son, Myungwoo ;
Moon, Kyeong-Joo ;
Lee, Byoung Hun ;
Myoung, Jae-Min ;
Strano, Michael S. ;
Ham, Moon-Ho ;
Ross, Caroline A. .
ADVANCED MATERIALS, 2013, 25 (34) :4723-4728