Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution

被引:13
作者
Fringes, Stefan [1 ]
Schwemmer, C. [1 ]
Rawlings, Colin D. [1 ]
Knoll, Armin W. [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Nanofluidics; nanofabrication; nanowires; nanoparticle assembly; OBJECTS; NANOWIRES; DEVICES; GLASS;
D O I
10.1021/acs.nanolett.9b03687
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate deposition of nanoparticles at defined positions on a substrate is still a challenging task, because it requires simultaneously stable long-range transport and attraction to the target site and precise short-range orientation and deposition. Here we present a method based on geometry-induced energy landscapes in a nanofluidic slit for particle manipulation: Brownian motors or electro-osmotic flows are used for particle delivery to the target area. At the target site, electrostatic trapping localizes and orients the particles. Finally, reducing the gap distance of the slit leads sequentially to a focusing of the particle position and a jump into adhesive contact by several nanometers. For 60 nm gold spheres, we obtain a placement accuracy of 8 nm. The versatility of the method is demonstrated further by a stacked assembly of nanorods and the directed deposition of InAs nanowires.
引用
收藏
页码:8855 / 8861
页数:7
相关论文
共 50 条
[21]   Straightforward fabrication of sub-10 nm nanogap electrode pairs by electron beam lithography [J].
McMullen, Reema ;
Mishra, Aditya ;
Slinker, Jason D. .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2022, 77 :275-280
[22]   Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors [J].
Siegfried, T. ;
Ekinci, Y. ;
Solak, H. H. ;
Martin, O. J. F. ;
Sigg, H. .
APPLIED PHYSICS LETTERS, 2011, 99 (26)
[23]   Novel germanium surface modification for sub-10 nm patterning with electron beam lithography and hydrogen silsesquioxane resist [J].
Gangnaik, Anushka S. ;
Georgiev, Yordan M. ;
Collins, Gillian ;
Holmes, Justin D. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (04)
[24]   Dry-Etching Processes for High-Aspect-Ratio Features with Sub-10 nm Resolution High-χ Block Copolymers [J].
Pound-Lana, Gwenaelle ;
Bezard, Philippe ;
Petit-Etienne, Camille ;
Cavalaglio, Sebastien ;
Cunge, Gilles ;
Cabannes-Boue, Benjamin ;
Fleury, Guillaume ;
Chevalier, Xavier ;
Zelsmann, Marc .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) :49184-49193
[25]   Sub-10-nm Nanochannels by Self-Sealing and Self-Limiting Atomic Layer Deposition [J].
Nam, Sung-Wook ;
Lee, Min-Hyun ;
Lee, Seung-Hyun ;
Lee, Do-Joong ;
Rossnagel, S. M. ;
Kim, Ki-Bum .
NANO LETTERS, 2010, 10 (09) :3324-3329
[26]   Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors [J].
Jang, Ji-Soo ;
Choi, Seon-Jin ;
Koo, Won-Tae ;
Kim, Sang-Joon ;
Cheong, Jun Young ;
Kim, Il-Doo .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (29) :24821-24829
[27]   Rapid, Low-Temperature Growth of Sub-10 nm Silica Nanowires through Plasma Pretreatment for Antireflection Applications [J].
Lee, Hong-Yi ;
Huang, Bo-Wen ;
Tsai, Yi-Ci ;
Shieh, Jiann .
ACS APPLIED NANO MATERIALS, 2019, 2 (05) :2836-2843
[28]   From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices [J].
Zhou, Ziwei ;
Zhao, Zhiyuan ;
Yu, Ye ;
Ai, Bin ;
Moehwald, Helmuth ;
Chiechi, Ryan C. ;
Yang, Joel K. W. ;
Zhang, Gang .
ADVANCED MATERIALS, 2016, 28 (15) :2956-2963
[29]   Sub-10 nm Nanofabrication via Nanoimprint Directed Self-Assembly of Block Copolymers [J].
Park, Sang-Min ;
Liang, Xiaogan ;
Harteneck, Bruce D. ;
Pick, Teresa E. ;
Hiroshiba, Nobuya ;
Wu, Ying ;
Helms, Brett A. ;
Olynick, Deirdre L. .
ACS NANO, 2011, 5 (11) :8523-8531
[30]   In situ generation of sub-10 nm silver nanowires under electron beam irradiation in a TEM [J].
Li, Junjie ;
Deepak, Francis Leonard .
CHEMICAL COMMUNICATIONS, 2020, 56 (35) :4765-4768