Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution

被引:13
作者
Fringes, Stefan [1 ]
Schwemmer, C. [1 ]
Rawlings, Colin D. [1 ]
Knoll, Armin W. [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Nanofluidics; nanofabrication; nanowires; nanoparticle assembly; OBJECTS; NANOWIRES; DEVICES; GLASS;
D O I
10.1021/acs.nanolett.9b03687
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate deposition of nanoparticles at defined positions on a substrate is still a challenging task, because it requires simultaneously stable long-range transport and attraction to the target site and precise short-range orientation and deposition. Here we present a method based on geometry-induced energy landscapes in a nanofluidic slit for particle manipulation: Brownian motors or electro-osmotic flows are used for particle delivery to the target area. At the target site, electrostatic trapping localizes and orients the particles. Finally, reducing the gap distance of the slit leads sequentially to a focusing of the particle position and a jump into adhesive contact by several nanometers. For 60 nm gold spheres, we obtain a placement accuracy of 8 nm. The versatility of the method is demonstrated further by a stacked assembly of nanorods and the directed deposition of InAs nanowires.
引用
收藏
页码:8855 / 8861
页数:7
相关论文
共 50 条
[11]   Stress evolution during the oxidation of silicon nanowires in the sub-10 nm diameter regime [J].
Kim, Byung-Hyun ;
Pamungkas, Mauludi Ariesto ;
Park, Mina ;
Kim, Gyubong ;
Lee, Kwang-Ryeol ;
Chung, Yong-Chae .
APPLIED PHYSICS LETTERS, 2011, 99 (14)
[12]   Sub-10 nm Nanofabrication With The Helium And Neon Ions In ORION NanoFab [J].
Singh, Bipin .
APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2013, 1525 :392-399
[13]   A high-pressure mechanism for realizing sub-10 nm tellurium nanoflakes on arbitrary substrates [J].
Hussain, Naveed ;
Rafique, Mohsin ;
Anwar, Tauseef ;
Murtaza, Muhammad ;
Liu, Junchen ;
Nosheen, Farhat ;
Huang, Kai ;
Huang, Ya ;
Lang, Jialiang ;
Wu, Hui .
2D MATERIALS, 2019, 6 (04)
[14]   Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10nm spatial resolution [J].
Perrino, A. P. ;
Ryu, Y. K. ;
Amo, C. A. ;
Morales, M. P. ;
Garcia, R. .
NANOTECHNOLOGY, 2016, 27 (27)
[15]   Unified Model of Shot Noise in the Tunneling Current in Sub-10 nm MOSFETs [J].
Lee, Jonghwan .
NANOMATERIALS, 2021, 11 (10)
[16]   Directed self-assembly of block copolymers for sub-10 nm fabrication [J].
Chen, Yu ;
Xiong, Shisheng .
INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2020, 2 (03)
[17]   Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique [J].
Bauman, Stephen J. ;
Debu, Desalegn T. ;
Herzog, Joseph B. .
NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XII, 2015, 9556
[18]   Sub-10 nm Resolution Patterning of Pockets for Enzyme Immobilization with Independent Density and Quasi-3D Topography Control [J].
Liu, Xiangyu ;
Kumar, Mohit ;
Calo, Annalisa ;
Albisetti, Edoardo ;
Zheng, Xiaorui ;
Manning, Kylie B. ;
Elacqua, Elizabeth ;
Weck, Marcus ;
Ulijn, Rein V. ;
Riedo, Elisa .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) :41780-41790
[19]   Sub-10 nm, high density titania nanoforests-gold nanoparticles composite for efficient sunlight-driven photocatalysis [J].
Tran, Viet V. ;
Nguyen, Oanh T. T. ;
Le, Chi H. ;
Phan, Tuan A. ;
Hoang, Ban V. ;
Dao, Thang D. ;
Nagao, Tadaaki ;
Hoang, Chung V. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (09)
[20]   Helium ion microscopy for low-damage characterization and sub-10 nm nanofabrication [J].
Ogawa, Shinichi .
AAPPS BULLETIN, 2022, 32 (01)