Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution

被引:13
|
作者
Fringes, Stefan [1 ]
Schwemmer, C. [1 ]
Rawlings, Colin D. [1 ]
Knoll, Armin W. [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Nanofluidics; nanofabrication; nanowires; nanoparticle assembly; OBJECTS; NANOWIRES; DEVICES; GLASS;
D O I
10.1021/acs.nanolett.9b03687
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate deposition of nanoparticles at defined positions on a substrate is still a challenging task, because it requires simultaneously stable long-range transport and attraction to the target site and precise short-range orientation and deposition. Here we present a method based on geometry-induced energy landscapes in a nanofluidic slit for particle manipulation: Brownian motors or electro-osmotic flows are used for particle delivery to the target area. At the target site, electrostatic trapping localizes and orients the particles. Finally, reducing the gap distance of the slit leads sequentially to a focusing of the particle position and a jump into adhesive contact by several nanometers. For 60 nm gold spheres, we obtain a placement accuracy of 8 nm. The versatility of the method is demonstrated further by a stacked assembly of nanorods and the directed deposition of InAs nanowires.
引用
收藏
页码:8855 / 8861
页数:7
相关论文
共 50 条
  • [1] Laser Ablation of Sub-10 nm Silver Nanoparticles
    Zinovev, Alexander
    Moore, Jerome F.
    Baryshev, Sergey V.
    Schultz, J. Albert
    Lewis, Ernest
    Brinson, Bruce
    McCully, Michael
    Pellin, Michael
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (17): : 9552 - 9559
  • [2] Characterizing the protein corona of sub-10 nm nanoparticles
    Glancy, Dylan
    Zhang, Yuwei
    Wu, Jamie L. Y.
    Ouyang, Ben
    Ohta, Seiichi
    Chan, Warren C. W.
    JOURNAL OF CONTROLLED RELEASE, 2019, 304 : 102 - 110
  • [3] Sub-10 nm porous alumina templates to produce sub-10 nm nanowires
    Resende, Pedro M.
    Martin-Gonzalez, Marisol
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 (198-204) : 198 - 204
  • [4] Mapping stress in polycrystals with sub-10 nm spatial resolution
    Polop, C.
    Vasco, E.
    Perrino, A. P.
    Garcia, R.
    NANOSCALE, 2017, 9 (37) : 13938 - 13946
  • [5] 1 nm-Resolution Sorting of Sub-10 nm Nanoparticles Using a Dielectric Metasurface with Toroidal Responses
    Luo, Hong
    Fang, Xiang
    Li, Chengfeng
    Dai, Xinhua
    Ru, Ning
    You, Minmin
    He, Tao
    Wu, Pin Chieh
    Wang, Zhanshan
    Shi, Yuzhi
    Cheng, Xinbin
    SMALL SCIENCE, 2023, 3 (09):
  • [6] Thermal Imaging of Block Copolymers with Sub-10 nm Resolution
    Gottlieb, Steven
    Pigard, Louis
    Ryu, Yu Kyoung
    Lorenzoni, Matteo
    Evangelio, Laura
    Fernandez-Regulez, Marta
    Rawlings, Colin D.
    Spieser, Martin
    Perez-Murano, Francesc
    Mueller, Marcus
    Knoll, Armin W.
    ACS NANO, 2021, 15 (05) : 9005 - 9016
  • [7] Electromechanical imaging of biological systems with sub-10 nm resolution
    Kalinin, SV
    Rodriguez, BJ
    Jesse, S
    Thundat, T
    Gruverman, A
    APPLIED PHYSICS LETTERS, 2005, 87 (05)
  • [8] A route for fabricating printable photonic devices with sub-10 nm resolution
    Pina-Hernandez, Carlos
    Lacatena, Valeria
    Calafiore, Giuseppe
    Dhuey, Scott
    Kravtsov, Konstantin
    Goltsov, Alexander
    Olynick, Deirdre
    Yankov, Vladimir
    Cabrini, Stefano
    Peroz, Christophe
    NANOTECHNOLOGY, 2013, 24 (06)
  • [9] Far-field fluorescence nanoscopy with sub-10 nm resolution
    Stefani, Fernando D.
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1495 - 1495
  • [10] High throughput RESS processing of sub-10 nm ibuprofen nanoparticles
    Sharma, Sudhir Kumar
    Jagannathan, Ramesh
    JOURNAL OF SUPERCRITICAL FLUIDS, 2016, 109 : 74 - 79