ALMOST PERIODICITY IN TIME OF SOLUTIONS OF THE KDV EQUATION

被引:19
作者
Binder, Ilia [1 ]
Damanik, David [2 ]
Goldstein, Michael [1 ]
Lukic, Milivoje [1 ,2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] Rice Univ, Dept Math, Houston, TX 77251 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
KORTEWEG-DEVRIES EQUATION; ABSOLUTELY CONTINUOUS-SPECTRUM; ERGODIC SCHRODINGER-OPERATORS; DE-VRIES EQUATION; NONLINEAR EQUATIONS; INITIAL DATA; POTENTIALS; POINTS;
D O I
10.1215/00127094-2018-0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for the KdV equation partial derivative(t)u - 6u partial derivative(x)u + partial derivative(3)(x)u = 0 with almost periodic initial data u(x,0) = V(x) We consider initial data V, for which the associated Schrodinger operator is absolutely continuous and has a spectrum that is not too thin in a sense we specify, and we show the existence, uniqueness, and almost periodicity in time of solutions. This establishes a conjecture of Deift for this class of initial data. The result is shown to apply to all small analytic quasiperiodic initial data with Diophantine frequency vector.
引用
收藏
页码:2633 / 2678
页数:46
相关论文
共 60 条
[1]  
[Anonymous], CAMBRIDGE STUDIES AD
[2]   Generic singular spectrum for ergodic Schrodinger operators [J].
Avila, A ;
Damanik, D .
DUKE MATHEMATICAL JOURNAL, 2005, 130 (02) :393-400
[3]  
AVILA A., ARXIV08102965V1MATHD
[4]  
AVILA A., ARXIV10060704V1MATHD
[5]   Global theory of one-frequency Schrodinger operators [J].
Avila, Artur .
ACTA MATHEMATICA, 2015, 215 (01) :1-54
[6]   Singular Density of States Measure for Subshift and Quasi-Periodic Schrodinger Operators [J].
Avila, Artur ;
Damanik, David ;
Zhang, Zhenghe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (02) :469-498
[7]   On the Spectrum and Lyapunov Exponent of Limit Periodic Schrodinger Operators [J].
Avila, Artur .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) :907-918
[8]   Generic continuous spectrum for ergodic Schrodinger operators [J].
Boshernitzan, Michael ;
Damanik, David .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (03) :647-662
[9]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[10]  
Chulaevskii V., 1981, Usp. Mat. Nauk, V36, P203