Graph inverse semigroups: Their characterization and completion

被引:26
作者
Jones, David G. [1 ]
Lawson, Mark V. [1 ,2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Inverse semigroups; Free categories; Cuntz-Krieger algebras; POLYCYCLIC MONOIDS; CSTAR-ALGEBRAS; REPRESENTATIONS; GROUPOIDS;
D O I
10.1016/j.jalgebra.2014.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graph inverse semigroups generalize the polycyclic inverse monoids and play an important role in the theory of C*-algebras. In this paper, we characterize such semigroups and show how they may be completed, under suitable conditions, to form what we call the Cuntz-Krieger semigroup of the graph. This semigroup is proved to be the ample semigroup of a topological groupoid associated with the graph, and the semigroup analogue of the Leavitt path algebra of the graph. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:444 / 473
页数:30
相关论文
共 39 条
[1]   The Leavitt path algebra of a graph [J].
Abrams, G ;
Pino, GA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :319-334
[2]  
Ash C.J., 1975, Semigroup Forum, V11, P140, DOI DOI 10.1007/BF02195262
[3]   ITERATION OF EXPANSIONS - UNAMBIGUOUS SEMIGROUPS [J].
BIRGET, JC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 34 (01) :1-55
[4]  
Bratteli O., 1999, MEM AM MATH SOC, V663
[5]   A CLASS OF D-SIMPLE SEMIGROUPS [J].
CLIFFORD, AH .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (04) :547-556
[6]   SIMPLE CSTAR-ALGEBRAS GENERATED BY ISOMETRIES [J].
CUNTZ, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 57 (02) :173-185
[7]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[8]   Semigroupoid C*-algebras [J].
Exel, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :303-318
[9]   Tight representations of semilattices and inverse semigroups [J].
Exel, R. .
SEMIGROUP FORUM, 2009, 79 (01) :159-182
[10]  
Howie J.M., 1995, Fundamentals of Semigroup Theory