Quantum Dynamics in Phase Space using Projected von Neumann Bases

被引:13
作者
Machnes, Shai [1 ]
Assemat, Elie [1 ]
Larsson, Henrik R. [2 ]
Tannor, David J. [1 ]
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Univ Kiel, Inst Phys Chem, Olshausenstr 40, D-24098 Kiel, Germany
基金
以色列科学基金会;
关键词
REPRESENTATIONS; SET;
D O I
10.1021/acs.jpca.5b12370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the mathematical underpinnings of the biorthogonal von Neumann method for quantum mechanical simulations (PvB). In particular, we present a detailed discussion of the important issue of nonorthogonal projection onto subspaces of biorthogonal bases, and how this differs from orthogonal projection. We present various representations of the Schrodinger equation in the reduced basis and discuss their relative merits. We conclude with illustrative examples and a discussion of the outlook and challenges ahead for the PvB representation.
引用
收藏
页码:3296 / 3308
页数:13
相关论文
共 32 条
[1]  
Assemat E., 2015, ARXIV150205165QUANTP
[2]  
Bai Z., 2000, TEMPLSTES SOLUTION A
[3]   Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions [J].
Brown, James ;
Carrington, Tucker, Jr. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (04)
[4]   Efficient method to generate time evolution of the Wigner function for open quantum systems [J].
Cabrera, Renan ;
Bondar, Denys I. ;
Jacobs, Kurt ;
Rabitz, Herschel A. .
PHYSICAL REVIEW A, 2015, 92 (04)
[5]   A NOVEL DISCRETE VARIABLE REPRESENTATION FOR QUANTUM-MECHANICAL REACTIVE SCATTERING VIA THE S-MATRIX KOHN METHOD [J].
COLBERT, DT ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :1982-1991
[6]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[7]   SEMI-CLASSICAL GAUSSIAN-BASIS SET METHOD FOR MOLECULAR VIBRATIONAL WAVE-FUNCTIONS [J].
DAVIS, MJ ;
HELLER, EJ .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (08) :3383-3395
[8]   Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation [J].
Dawes, R ;
Carrington, T .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (05) :1-11
[9]   How to choose one-dimensional basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the one-dimensional functions: Energy levels of coupled systems with as many as 16 coordinates [J].
Dawes, R ;
Carrington, T .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (13)
[10]   Accurate and efficient implementation of the von Neumann representation for laser pulses with discrete and finite spectra [J].
Dimler, Frank ;
Fechner, Susanne ;
Rodenberg, Alexander ;
Brixner, Tobias ;
Tannor, David J. .
NEW JOURNAL OF PHYSICS, 2009, 11