Properties of hot-spot emission in a warm plastic-shell implosion on the OMEGA laser system

被引:4
作者
Shang, W. L. [1 ,2 ,3 ]
Stoeckl, C. [3 ]
Betti, R. [2 ,3 ]
Regan, S. P. [3 ]
Sangster, T. C. [3 ]
Hu, S. X. [3 ]
Christopherson, A. [2 ,3 ]
Gopalaswamy, V [2 ,3 ]
Cao, D. [3 ]
Seka, W. [3 ]
Michel, D. T. [3 ]
Davis, A. K. [3 ]
Radha, P. B. [3 ]
Marshall, F. J. [3 ]
Epstein, R. [3 ]
Solodov, A. A. [3 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
[2] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA
[3] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
基金
中国国家自然科学基金;
关键词
INERTIAL-CONFINEMENT FUSION; UNIFORMITY; MIX;
D O I
10.1103/PhysRevE.98.033210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A warm plastic-shell implosion is performed on the OMEGA laser system. The measured corona plasma evolution and shell trajectory in the acceleration phase are reasonably simulated by the one-dimensional LILAC simulation including the nonlocal and cross-beam energy transfer models. The results from analytical thin-shell model reproduce the time-dependent shell radius by LILAC simulation and also the hot-spot x-ray-emissivity profile at stagnation predicted by SPECT3D. In the SPECT3D simulations within a clean implosion, a U-shaped hot-spot radius evolution can be observed with the Kirkpatrick-Baez microscope response (the photon energy is from 4 to 8 keV). However, a fading-away hot-spot radius evolution is measured in OMEGA warm plastic-shell implosion because of mixings. To recover the measured hot-spot x-ray emissivity profile at stagnation, a nonisobaric hot-spot model is built and the normalized hot-spot temperature, density, and pressure profiles (normalized to the corresponding target-center values) are obtained.
引用
收藏
页数:9
相关论文
共 49 条
[1]  
[Anonymous], 1998, QUEST IGNITION ENERG
[2]   Observation of early shell-dopant mix in OMEGA direct-drive implosions and comparisons with radiation-hydrodynamic simulations [J].
Baumgaertel, J. A. ;
Bradley, P. A. ;
Hsu, S. C. ;
Cobble, J. A. ;
Hakel, P. ;
Tregillis, I. L. ;
Krasheninnikova, N. S. ;
Murphy, T. J. ;
Schmitt, M. J. ;
Shah, R. C. ;
Obrey, K. D. ;
Batha, S. ;
Johns, H. ;
Joshi, T. ;
Mayes, D. ;
Mancini, R. C. ;
Nagayama, T. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[3]   High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion -: art. no. 110702 [J].
Betti, R ;
Zhou, C .
PHYSICS OF PLASMAS, 2005, 12 (11) :1-4
[4]  
Betti R, 2016, NAT PHYS, V12, P435, DOI [10.1038/NPHYS3736, 10.1038/nphys3736]
[5]   Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules [J].
Betti, R ;
Umansky, M ;
Lobatchev, V ;
Goncharov, VN ;
McCrory, RL .
PHYSICS OF PLASMAS, 2001, 8 (12) :5257-5267
[6]   Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser [J].
Boehly, TR ;
Smalyuk, VA ;
Meyerhofer, DD ;
Knauer, JP ;
Bradley, DK ;
Craxton, RS ;
Guardalben, MJ ;
Skupsky, S ;
Kessler, TJ .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (07) :3444-3447
[7]   Integrated diagnostic analysis of inertial confinement fusion capsule performance [J].
Cerjan, Charles ;
Springer, Paul T. ;
Sepke, Scott M. .
PHYSICS OF PLASMAS, 2013, 20 (05)
[8]   Direct-drive inertial confinement fusion: A review [J].
Craxton, R. S. ;
Anderson, K. S. ;
Boehly, T. R. ;
Goncharov, V. N. ;
Harding, D. R. ;
Knauer, J. P. ;
McCrory, R. L. ;
McKenty, P. W. ;
Meyerhofer, D. D. ;
Myatt, J. F. ;
Schmitt, A. J. ;
Sethian, J. D. ;
Short, R. W. ;
Skupsky, S. ;
Theobald, W. ;
Kruer, W. L. ;
Tanaka, K. ;
Betti, R. ;
Collins, T. J. B. ;
Delettrez, J. A. ;
Hu, S. X. ;
Marozas, J. A. ;
Maximov, A. V. ;
Michel, D. T. ;
Radha, P. B. ;
Regan, S. P. ;
Sangster, T. C. ;
Seka, W. ;
Solodov, A. A. ;
Soures, J. M. ;
Stoeckl, C. ;
Zuegel, J. D. .
PHYSICS OF PLASMAS, 2015, 22 (11)
[9]   X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions [J].
Davis, A. K. ;
Michel, D. T. ;
Craxton, R. S. ;
Epstein, R. ;
Hohenberger, M. ;
Mo, T. ;
Froula, D. H. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[10]   EFFECT OF LASER ILLUMINATION NONUNIFORMITY ON THE ANALYSIS OF TIME-RESOLVED X-RAY MEASUREMENTS IN UV-SPHERICAL TRANSPORT EXPERIMENTS [J].
DELETTREZ, J ;
EPSTEIN, R ;
RICHARDSON, MC ;
JAANIMAGI, PA ;
HENKE, BL .
PHYSICAL REVIEW A, 1987, 36 (08) :3926-3934