Thermal conductivity enhancement of poly(3-hydroxylbutyrate) composites by constructing segregated structure with the aid of poly(ethylene oxide)

被引:31
作者
Li, Zonglin [1 ,2 ]
Kong, Junjun [1 ,2 ]
Ju, Dandan [3 ]
Cao, Zengwen [1 ,2 ]
Han, Lijing [1 ]
Dong, Lisong [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Key Lab Polymer Ecomat, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 10080, Peoples R China
[3] Harbin Inst Technol, Lab Space Environm & Phys Sci, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermally conductivity pathway; Powder mixing; Thermal conductivity; Microstructure; BORON-NITRIDE; CRYSTALLIZATION BEHAVIOR; POLYMER BLENDS; NANOCOMPOSITES; INTERFACE; FILLERS; FABRICATION; NANOTUBES; TRANSPORT; GRAPHENE;
D O I
10.1016/j.compscitech.2017.06.028
中图分类号
TB33 [复合材料];
学科分类号
摘要
Thermally conductive poly (3-hydroxylbutyrate) (PHB)/poly (ethylene oxide) (PEO)/boron nitride (BN) composites were fabricated by powder mixing. The thermal conductivity of PHB composite was remarkably enhanced by incorporating a small amount of PEO. SEM images revealed that segregated and co-continuous structures were formed in PHB composites. Owing to the addition of PEO, acting as a binder, BN particles were able to stack more closely and covered larger size of PHB aggregates than PHB/BN composites did. In addition, the partial miscibility between PHB and PEO could efficiently improve the interaction between BN particles and PHB matrix. Besides, during the hot pressing process, PEO could penetrate into the voids existing between BN particles and lead the phonon scattering to decrease. The hydrogen bonding existed between PEO and BN particles also played an important role to the thermal conductivity enhancement of PHB composites. These factors combined were believed to result in higher thermal conductivity of PHB/PEO/BN composites than PHB/BN composites fabricated by powder mixing. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 191
页数:7
相关论文
共 42 条
[1]   THERMAL-CONDUCTIVITIES OF COMPOSITES IN SEVERAL TYPES OF DISPERSION-SYSTEMS [J].
AGARI, Y ;
UEDA, A ;
NAGAI, S .
JOURNAL OF APPLIED POLYMER SCIENCE, 1991, 42 (06) :1665-1669
[2]   Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites [J].
Barako, Michael T. ;
Roy-Panzer, Shilpi ;
English, Timothy S. ;
Kodama, Takashi ;
Asheghi, Mehdi ;
Kenny, Thomas W. ;
Goodson, Kenneth E. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) :19251-19259
[3]   SURFACE-ACTIVITY OF A BORON-NITRIDE POWDER - A VIBRATIONAL STUDY [J].
BARATON, MI ;
MERLE, T ;
QUINTARD, P ;
LORENZELLI, V .
LANGMUIR, 1993, 9 (06) :1486-1491
[4]   Improved Thermal Conductivity and Flame Retardancy in Polystyrene/Poly(vinylidene fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles [J].
Cao, Jian-Ping ;
Zhao, Xiaodong ;
Zhao, Jun ;
Zha, Jun-Wei ;
Hu, Guo-Hua ;
Dang, Zhi-Min .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :6915-6924
[5]   Self-assembled block copolymer micelles with silver-carbon nanotube hybrid fillers for high performance thermal conduction [J].
Choi, Jae Ryung ;
Yu, Seunggun ;
Jung, Haejong ;
Hwang, Sun Kak ;
Kim, Richard Hahnkee ;
Song, Giyoung ;
Cho, Sung Hwan ;
Bae, Insung ;
Hong, Soon Man ;
Koo, Chong Min ;
Park, Cheolmin .
NANOSCALE, 2015, 7 (05) :1888-1895
[6]   Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures [J].
Feng, Changping ;
Ni, Haiying ;
Chen, Jun ;
Yang, Wei .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (30) :19732-19738
[7]  
Fernandez J. J., 2015, PHYS CHEM CHEM PHYS, V17, P8125
[8]   Thermally conductive PP/AlN composites with a 3-D segregated structure [J].
Hu, Mingchang ;
Feng, Jiyun ;
Ng, Ka Ming .
COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 110 :26-34
[9]   Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend [J].
Huang, Jinrui ;
Zhu, Yutian ;
Xu, Lina ;
Chen, Jianwen ;
Jiang, Wei ;
Nie, Xiaoan .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 129 :160-165
[10]   Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites [J].
Huang, Xingyi ;
Iizuka, Tomonori ;
Jiang, Pingkai ;
Ohki, Yoshimichi ;
Tanaka, Toshikatsu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (25) :13629-13639