Localization atomic force microscopy

被引:131
作者
Heath, George R. [1 ,4 ]
Kots, Ekaterina [2 ]
Robertson, Janice L. [3 ]
Lansky, Shifra [1 ]
Khelashvili, George [2 ]
Weinstein, Harel [2 ]
Scheuring, Simon [1 ,2 ]
机构
[1] Weill Cornell Med, Dept Anesthesiol, New York, NY 10065 USA
[2] Weill Cornell Med, Dept Physiol & Biophys, New York, NY 10065 USA
[3] Washington Univ, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
[4] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England
关键词
PROKARYOTIC HOMOLOG; DYNAMICS; RESOLUTION; MECHANISM; TRANSPORTER; MEMBRANES; VISUALIZATION; PROTEINS; CHANNELS; IMAGES;
D O I
10.1038/s41586-021-03551-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding structural dynamics of biomolecules at the single-molecule level is vital to advancing our knowledge of molecular mechanisms. Currently, there are few techniques that can capture dynamics at the sub-nanometre scale and in physiologically relevant conditions. Atomic force microscopy (AFM)1 has the advantage of analysing unlabelled single molecules in physiological buffer and at ambient temperature and pressure, but its resolution limits the assessment of conformational details of biomolecules(2). Here we present localization AFM (LAFM), a technique developed to overcome current resolution limitations. By applying localization image reconstruction algorithms(3) to peak positions in high-speed AFM and conventional AFM data, we increase the resolution beyond the limits set by the tip radius, and resolve single amino acid residues on soft protein surfaces in native and dynamic conditions. LAFM enables the calculation of high-resolution maps from either images of many molecules or many images of a single molecule acquired over time, facilitating single-molecule structural analysis. LAFM is a post-acquisition image reconstruction method that can be applied to any biomolecular AFM dataset.
引用
收藏
页码:385 / +
页数:20
相关论文
共 66 条
[1]   13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1 [J].
Abraham, Sherwin J. ;
Cheng, Ricky C. ;
Chew, Thomas A. ;
Khantwal, Chandra M. ;
Liu, Corey W. ;
Gong, Shimei ;
Nakamoto, Robert K. ;
Maduke, Merritt .
JOURNAL OF BIOMOLECULAR NMR, 2015, 61 (3-4) :209-226
[2]   Separate ion pathways in a Cl+/H+ exchanger [J].
Accardi, A ;
Walden, M ;
Nguitragool, W ;
Jayaram, H ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2005, 126 (06) :563-570
[3]   Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels [J].
Accardi, A ;
Kolmakova-Partensky, L ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (02) :109-119
[4]   Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels [J].
Accardi, A ;
Miller, C .
NATURE, 2004, 427 (6977) :803-807
[5]   A high-speed atomic force microscope for studying biological macromolecules [J].
Ando, T ;
Kodera, N ;
Takai, E ;
Maruyama, D ;
Saito, K ;
Toda, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12468-12472
[6]   Conformational changes required for H+/Cl- exchange mediated by a CLC transporter [J].
Basilio, Daniel ;
Noack, Kristin ;
Picollo, Alessandra ;
Accardi, Alessio .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2014, 21 (05) :456-463
[7]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[8]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[9]  
Bukharaev A., 1998, Scanning Microscopy, V12, P225
[10]  
Burger W., 2016, DIGITAL IMAGE PROCES, P609