Protein structure determination by electron diffraction using a single three-dimensional nanocrystal

被引:69
作者
Clabbers, M. T. B. [1 ]
van Genderen, E. [2 ]
Wan, W. [3 ]
Wiegers, E. L. [4 ]
Gruene, T. [2 ]
Abrahams, J. P. [1 ,2 ,5 ]
机构
[1] Basel Univ, C CINA, Biozentrum, Mattenstrasse 26, CH-4058 Basel, Switzerland
[2] PSI, Dept Biol & Chem, CH-5232 Villigen, Switzerland
[3] Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden
[4] Leiden Univ, Leiden Inst Phys, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[5] Leiden Univ, Leiden Inst Biol, Sylviusweg 72, NL-2333 BE Leiden, Netherlands
来源
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY | 2017年 / 73卷
关键词
electron crystallography; protein nanocrystals; hybrid pixel detector; PIXEL READOUT CHIP; DATA-COLLECTION; STRUCTURE REFINEMENT; ROTATION METHOD; CRYSTALS; CRYSTALLOGRAPHY; MICROSCOPY; RESOLUTION; DETECTOR; TOMOGRAPHY;
D O I
10.1107/S2059798317010348
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 mu m(3), i.e. no more than 6 x 10(5) unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 x 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.
引用
收藏
页码:738 / 748
页数:11
相关论文
共 75 条
[1]  
Abrahams J. P., 1993, PROTEIN CRYSTALLOGR, V28, P39
[2]  
ARNDT AW, 1977, ROTATION METHOD CRYS
[3]   The PILATUS 1M detector [J].
Broennimann, C ;
Eikenberry, EF ;
Henrich, B ;
Horisberger, R ;
Huelsen, G ;
Pohl, E ;
Schmitt, B ;
Schulze-Briese, C ;
Suzuki, M ;
Tomizaki, T ;
Toyokawa, H ;
Wagner, A .
JOURNAL OF SYNCHROTRON RADIATION, 2006, 13 :120-130
[4]   Free R value: Cross-validation in crystallography [J].
Brunger, AT .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :366-396
[5]   THE SCATTERING OF ELECTRONS BY ATOMS AND CRYSTALS .1. A NEW THEORETICAL APPROACH [J].
COWLEY, JM ;
MOODIE, AF .
ACTA CRYSTALLOGRAPHICA, 1957, 10 (10) :609-619
[6]   The Buccaneer software for automated model building.: 1.: Tracing protein chains [J].
Cowtan, Kevin .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2006, 62 :1002-1011
[7]   Small is beautiful: protein micro-crystallography [J].
Cusack, S ;
Belrhali, H ;
Bram, A ;
Burghammer, M ;
Perrakis, A ;
Riekel, C .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (Suppl 8) :634-637
[8]   Data-collection strategies [J].
Dauter, Z .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 :1703-1717
[9]   Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED [J].
de la Cruz, M. Jason ;
Hattne, Johan ;
Shi, Dan ;
Seidler, Paul ;
Rodriguez, Jose ;
Reyes, Francis E. ;
Sawaya, Michael R. ;
Cascio, Duilio ;
Weiss, Simon C. ;
Kim, Sun Kyung ;
Hinck, Cynthia S. ;
Hinck, Andrew P. ;
Calero, Guillermo ;
Eisenberg, David ;
Gonen, Tamir .
NATURE METHODS, 2017, 14 (04) :399-+
[10]   Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals [J].
De la Mora, Eugenio ;
Carmichael, Ian ;
Garman, Elspeth F. .
JOURNAL OF SYNCHROTRON RADIATION, 2011, 18 :346-357