LOWER BOUND ON THE NUMBER OF PERIODIC SOLUTIONS FOR ASYMPTOTICALLY LINEAR PLANAR HAMILTONIAN SYSTEMS

被引:4
作者
Gidoni, Paolo [1 ,2 ]
Margheri, Alessandro [2 ,3 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Lisbon, Fac Ciencias, Ctr Matemat Aplicacoes Fundamentais & Invest Oper, Edificio C6, P-1749016 Lisbon, Portugal
[3] Univ Lisbon, Fac Ciencias, Dept Matemat, Edificio C6, P-1749016 Lisbon, Portugal
关键词
Poincare-Birkhoff theorem; Maslov index; topological degree; asymptotically linear Hamiltonian systems; periodic solutions; POINCARE-BIRKHOFF THEOREM; ROTATION NUMBERS; INDEX THEORY; EQUATIONS; FLOWS;
D O I
10.3934/dcds.2019024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove the lower bound for the number of T-periodic solutions of an asymptotically linear planar Hamiltonian system. Precisely, we show that such a system, T-periodic in time, with T-Maslov indices i(0), i(infinity) at the origin and at infinity, has at least vertical bar i(infinity) - i(0) vertical bar periodic solutions, and an additional one if i(0) is even. Our argument combines the Poincare-Birkhoff Theorem with an application of topological degree. We illustrate the sharpness of our result, and extend it to the case of second orders ODEs with linear-like behaviour at zero and infinity.
引用
收藏
页码:585 / 606
页数:22
相关论文
共 21 条