The role of subspace swap in maximum likelihood estimation performance breakdown

被引:3
作者
Johnson, Ben A. [1 ]
Abramovich, Yuri I. [1 ]
Mestre, Xavier [1 ]
机构
[1] RLM Pty Ltd, Edinburgh, Australia
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
关键词
direction of arrival estimation; maximum likelihood estimation; nonuniformly spaced arrays;
D O I
10.1109/ICASSP.2008.4518148
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Maximum likelihood estimation techniques demonstrate "performance breakdown" at low signal-to-noise ratios where observed estimation errors rapidly depart from the Cramer-Rao bound below a threshold SNR. Rather than rely on the classic asymptotic analysis for prediction of that threshold, Random Matrix Theory (RMT) analysis is employed. Both analytic predictions and direct Monte-Carlo simulations demonstrate that the threshold value can be reliably predicted even for small sample support far removed from classic asymptotic assumptions.
引用
收藏
页码:2469 / +
页数:2
相关论文
共 20 条
[1]  
ABRAMOVICH YI, 2007, P IEEE INT C AC SPEE, V2, P1049
[2]   GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays [J].
Abramovich, Yuri I. ;
Spencer, Nicholas K. ;
Gorokhov, Alexei Y. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (01) :20-31
[3]  
[Anonymous], 1958, INTRO MULTIVARIATE S
[4]   Threshold region performance of maximum likelihood direction of arrival estimators [J].
Athley, F .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (04) :1359-1373
[5]  
Athley F, 2002, INT CONF ACOUST SPEE, P3017
[6]   A new algorithm for Golomb ruler derivation and proof of the 19 mark ruler [J].
Dollas, A ;
Rankin, WT ;
McCracken, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :379-382
[7]   INTRODUCTION TO GENERAL STATISTICAL-ANALYSIS [J].
GIRKO, VL .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1988, 32 (02) :229-242
[8]  
HAWKES M, 2001, P ICASSP SALT LAK UT, V6, P4005
[9]  
JOHNSTONE M, 2004, SPARSE PRINCIPAL COM
[10]  
MESTRE X, 2006, IEEE T INFORM UNPUB