Berry phase in the gravitational quantum well and the Seiberg-Witten map

被引:56
作者
Bastos, C. [1 ]
Bertolami, O. [1 ]
机构
[1] Univ Tecn Lisboa, Dept Fis, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
D O I
10.1016/j.physleta.2008.06.073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explicitly compute the geometrical Berry phase for the noncommutative gravitational quantum well for different SW maps. We find that they lead to different partial contributions to the Berry phase. For the most general map we obtain that Delta gamma (S) similar to eta(3), in a segment S of the path in the configuration space where root eta is the fundamental momentum scale for the noncommutative gravitational quantum well. For the full closed path, we find, through an explicit computation, that gamma(C) = 0. This result is consistent with the fact that physical properties are independent of the SW map and shows that these maps do not introduce degeneracies or level crossing in the noncommutative extensions of the gravitational quantum well. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5556 / 5559
页数:4
相关论文
共 33 条
[1]   A simple signal of noncommutative space [J].
Acatrinei, CS .
MODERN PHYSICS LETTERS A, 2005, 20 (19) :1437-1441
[2]   Berry phase for spin-1/2 particles moving in a space-time with torsion [J].
Alimohammadi, M ;
Shariati, A .
EUROPEAN PHYSICAL JOURNAL C, 2001, 21 (01) :193-196
[3]   Remarks on the noncommutative gravitational quantum well [J].
Banerjee, Rabin ;
Roy, Binayak Dutta ;
Samanta, Saurav .
PHYSICAL REVIEW D, 2006, 74 (04)
[4]  
BASTOS C, PHYS REV D IN PRESS
[5]  
BASTOS C, 07124122 GRQC
[6]   Weyl-Wigner formulation of noncommutative quantum mechanics [J].
Bastos, Catarina ;
Bertolami, Orfeu ;
Dias, Nuno Costa ;
Prata, Joao Nuno .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
[7]   Monopole and Berry phase in momentum space in noncommutative quantum mechanics -: art. no. 127701 [J].
Bérard, A ;
Mohrbach, H .
PHYSICAL REVIEW D, 2004, 69 (12)
[9]   Noncommutative gravitational quantum well -: art. no. 025010 [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
PHYSICAL REVIEW D, 2005, 72 (02) :1-9
[10]   Quantum and classical divide: the gravitational case [J].
Bertolami, O ;
Rosa, JG .
PHYSICS LETTERS B, 2006, 633 (01) :111-115