Combinatorial Hopf Algebras and K-Homology of Grassmanians

被引:47
作者
Lam, Thomas [2 ]
Pylyavskyy, Pavlo [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48103 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
10.1093/imrn/rnm125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, we study six combinatorial Hopf algebras. These Hopf algebras can be thought of as K-theoretic analogues of the by now classical "square" of Hopf algebras consisting of symmetric functions, quasisymmetric functions, noncommutative symmetric functions and the Malvenuto-Reutenauer Hopf algebra of permutations. In addition, we develop a theory of set-valued P-partitions and study three new families of symmetric functions which are weight generating functions of reverse plane partitions, weak set-valued tableaux and valued-set tableaux.
引用
收藏
页数:48
相关论文
共 19 条
[1]   Structure of the Malvenuto-Reutenauer Hopf algebra of permutations [J].
Aguiar, M ;
Sottile, F .
ADVANCES IN MATHEMATICS, 2005, 191 (02) :225-275
[2]  
[Anonymous], 1999, ENUMERATIVE COMBINAT
[3]   A Littlewood-Richardson rule for the K-theory of Grassmannians [J].
Buch, AS .
ACTA MATHEMATICA, 2002, 189 (01) :37-78
[4]   Noncommutative Schur functions and their applications [J].
Fomin, S ;
Greene, C .
DISCRETE MATHEMATICS, 1998, 193 (1-3) :179-200
[5]   The Yang-Baxter equation, symmetric functions, and Schubert polynomials [J].
Fomin, S ;
Kirillov, AN .
DISCRETE MATHEMATICS, 1996, 153 (1-3) :123-143
[6]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[7]  
GESSEL I, 1984, COMBINATORICS ALGEBR, P389
[8]   The algebra of quasi-symmetric functions is free over the integers [J].
Hazewinkel, M .
ADVANCES IN MATHEMATICS, 2001, 164 (02) :283-300
[9]  
KROB D, 2001, P 13 INT C FORM POW
[10]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V295, P629