In-Situ ESEM and EELS Observation of Water Uptake and Ice Formation in Multilayer Graphene Oxide

被引:27
作者
Daio, Takeshi [1 ,2 ,3 ]
Bayer, Thomas [4 ]
Ikuta, Tatsuya [5 ]
Nishiyama, Takashi
Takahashi, Koji [4 ,5 ]
Takata, Yasuyuki [2 ,4 ]
Sasaki, Kazunari [1 ,2 ,3 ,4 ]
Lyth, Stephen Matthew [4 ,6 ]
机构
[1] Int Ctr Hydrogen Energy, Fukuoka, Japan
[2] Dept Mech Engn, Fukuoka, Japan
[3] Next Generat Fuel Cell Ctr NEXT FC, Fukuoka, Japan
[4] Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka, Japan
[5] Kyushu Univ, Dept Aeronaut & Astronaut, Fukuoka 812, Japan
[6] Univ Sheffield, Dept Mech Engn, Sheffield S10 2TN, S Yorkshire, England
基金
日本科学技术振兴机构;
关键词
ELECTRONIC-STRUCTURE; GRAPHITE; HYDRATION; DYNAMICS;
D O I
10.1038/srep11807
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene oxide (GO) is hydrophilic and swells significantly when in contact with water. Here, we investigate the change in thickness of multilayer graphene oxide membranes due to intercalation of water, via humidity-controlled observation in an environmental scanning electron microscope (ESEM). The thickness increases reproducibly with increasing relative humidity. Electron energy loss spectroscopy (EELS) reveals the existence of water ice under cryogenic conditions, even in high vacuum environment. Additionally, we demonstrate that freezing then thawing water trapped in the multilayer graphene oxide membrane leads to the opening up of micron-scale inter-lamellar voids due to the expansion of ice crystals.
引用
收藏
页数:8
相关论文
共 39 条
[1]   The Role of Intercalated Water in Multilayered Graphene Oxide [J].
Acik, Muge ;
Mattevi, Cecilia ;
Gong, Cheng ;
Lee, Geunsik ;
Cho, Kyeongjae ;
Chhowalla, Manish ;
Chabal, Yves J. .
ACS NANO, 2010, 4 (10) :5861-5868
[2]   Square ice in graphene nanocapillaries [J].
Algara-Siller, G. ;
Lehtinen, O. ;
Wang, F. C. ;
Nair, R. R. ;
Kaiser, U. ;
Wu, H. A. ;
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2015, 519 (7544) :443-+
[3]  
[Anonymous], 1855, Ann. Chim. Phys.
[4]   EELS characterization of radiolytic products in frozen samples [J].
Aronova, M. A. ;
Sousa, A. A. ;
Leapman, R. D. .
MICRON, 2011, 42 (03) :252-256
[5]   Sorption and desorption behavior of water and organic solvents from graphite oxide [J].
Barroso-Bujans, F. ;
Cerveny, S. ;
Alegria, A. ;
Colmenero, J. .
CARBON, 2010, 48 (11) :3277-3286
[6]   Characterization of a graphene oxide membrane fuel cell [J].
Bayer, T. ;
Bishop, S. R. ;
Nishihara, M. ;
Sasaki, K. ;
Lyth, S. M. .
JOURNAL OF POWER SOURCES, 2014, 272 :239-247
[7]   Ultrahigh humidity sensitivity of graphene oxide [J].
Bi, Hengchang ;
Yin, Kuibo ;
Xie, Xiao ;
Ji, Jing ;
Wan, Shu ;
Sun, Litao ;
Terrones, Mauricio ;
Dresselhaus, Mildred S. .
SCIENTIFIC REPORTS, 2013, 3
[8]   Ultrafast Graphene Oxide Humidity Sensors [J].
Borini, Stefano ;
White, Richard ;
Wei, Di ;
Astley, Michael ;
Haque, Samiul ;
Spigone, Elisabetta ;
Harris, Nadine ;
Kivioja, Jani ;
Ryhanen, Tapani .
ACS NANO, 2013, 7 (12) :11166-11173
[9]   Water dynamics in graphite oxide investigated with neutron scattering [J].
Buchsteiner, Alexandra ;
Lerf, Anton ;
Pieper, Joerg .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22328-22338
[10]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460