Genome-Wide Identification and Analysis of FKBP Gene Family in Wheat (Triticum asetivum)

被引:6
|
作者
Ge, Qiang [1 ,2 ]
Peng, Peipei [1 ]
Cheng, Mingyue [1 ]
Meng, Yanjun [1 ]
Cao, Yuan [1 ]
Zhang, Shuya [1 ]
Long, Yu [3 ]
Li, Gezi [1 ,2 ]
Kang, Guozhang [1 ,2 ]
机构
[1] Henan Agr Univ, Natl Engn Res Ctr Wheat, Longzi Lake Campus, Zhengzhou 450046, Peoples R China
[2] Henan Agr Univ, Natl Key Lab Wheat & Maize Crop Sci, Longzi Lake Campus, Zhengzhou 450046, Peoples R China
[3] Henan Univ, Sch Life Sci, State Key Lab Crop Stress Adaptat & Improvement, Kaifeng 475004, Peoples R China
关键词
FKBP; PPIase; qRT-PCR; biotic and abiotic stress; IMMUNOPHILINS; EXPRESSION; STRESS; OVEREXPRESSION; ARABIDOPSIS; THERMOTOLERANCE; LOCALIZATION; DUPLICATION; ISOMERASES; PARVULINS;
D O I
10.3390/ijms232314501
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FK506-binding protein (FKBP) genes have been found to play vital roles in plant development and abiotic stress responses. However, limited information is available about this gene family in wheat (Triticum aestivum L.). In this study, a total of 64 FKBP genes were identified in wheat via a genome-wide analysis involving a homologous search of the latest wheat genome data, which was unevenly distributed in 21 chromosomes, encoded 152 to 649 amino acids with molecular weights ranging from 16 kDa to 72 kDa, and was localized in the chloroplast, cytoplasm, nucleus, mitochondria, peroxisome and endoplasmic reticulum. Based on sequence alignment and phylogenetic analysis, 64 TaFKBPs were divided into four different groups or subfamilies, providing evidence of an evolutionary relationship with Aegilops tauschii, Brachypodium distachyon, Triticum dicoccoides, Arabidopsis thaliana and Oryza sativa. Hormone-related, abiotic stress-related and development-related cis-elements were preferentially presented in promoters of TaFKBPs. The expression levels of TaFKBP genes were investigated using transcriptome data from the WheatExp database, which exhibited tissue-specific expression patterns. Moreover, TaFKBPs responded to drought and heat stress, and nine of them were randomly selected for validation by qRT-PCR. Yeast cells expressing TaFKBP19-2B-2 or TaFKBP18-6B showed increased influence on drought stress, indicating their negative roles in drought tolerance. Collectively, our results provide valuable information about the FKBP gene family in wheat and contribute to further characterization of FKBPs during plant development and abiotic stress responses, especially in drought stress.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Genome-Wide Identification and Analysis of the WRKY Gene Family in Asparagus officinalis
    Chen, Jing
    Hou, Sijia
    Zhang, Qianqian
    Meng, Jianqiao
    Zhang, Yingying
    Du, Junhong
    Wang, Cong
    Liang, Dan
    Guo, Yunqian
    GENES, 2023, 14 (09)
  • [22] Genome-wide Identification and Structural Analysis of Pyrophosphatase Gene Family in Cotton
    Zhao, Xiaojie
    Lu, Xuke
    Yin, Zujun
    Wang, Delong
    Wang, Junjuan
    Fan, Weili
    Wang, Shuai
    Zhang, Tianbao
    Ye, Wuwei
    CROP SCIENCE, 2016, 56 (04) : 1831 - 1840
  • [23] Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers
    Hu, Lifang
    Liu, Shiqiang
    GENETICS AND MOLECULAR BIOLOGY, 2011, 34 (04) : 624 - U201
  • [24] Genome-wide identification, evolution and expression analysis of NAC gene family under salt stress in wild emmer wheat (Triticum dicoccoides. L)
    Rui, Zesheng
    Pan, Wenqiu
    Zhao, Qinlong
    Hu, Haibo
    Li, Xiuhua
    Xing, Liheng
    Jia, Huining
    She, Kuijun
    Nie, Xiaojun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 230
  • [25] Genome-wide identification of the histone acetyltransferase gene family in Triticum aestivum
    Gao, Shiqi
    Li, Linzhi
    Han, Xiaolei
    Liu, Tingting
    Jin, Peng
    Cai, Linna
    Xu, Miaoze
    Zhang, Tianye
    Zhang, Fan
    Chen, Jianping
    Yang, Jian
    Zhong, Kaili
    BMC GENOMICS, 2021, 22 (01)
  • [26] Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)
    Ma, Jian
    Yang, Yujie
    Luo, Wei
    Yang, Congcong
    Ding, Puyang
    Liu, Yaxi
    Qiao, Linyi
    Chang, Zhijian
    Geng, Hongwei
    Wang, Penghao
    Jiang, Qiantao
    Wang, Jirui
    Chen, Guoyue
    Wei, Yuming
    Zheng, Youliang
    Lan, Xiujin
    PLOS ONE, 2017, 12 (07):
  • [27] Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat (Triticum aestivum L)
    Sharma, Pradeep
    Mishra, Shefali
    Pandey, Bharati
    Singh, Gyanendra
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [28] Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat (Triticum aestivum L.)
    Wang, Xianguo
    Liu, Yang
    Li, Zheng
    Gao, Xiang
    Dong, Jian
    Zhang, Jiacheng
    Zhang, Longlong
    Thomashow, Linda S.
    Weller, David M.
    Yang, Mingming
    PLANTS-BASEL, 2020, 9 (07): : 1 - 20
  • [29] Genome-Wide Analysis and Evolutionary Perspective of the Cytokinin Dehydrogenase Gene Family in Wheat (Triticum aestivum L.)
    Jain, Priyanka
    Singh, Ankita
    Iquebal, Mir Asif
    Jaiswal, Sarika
    Kumar, Sundeep
    Kumar, Dinesh
    Rai, Anil
    FRONTIERS IN GENETICS, 2022, 13
  • [30] Genome-wide identification and characterization of laccase gene family in Citrus sinensis
    Xu, Xiaoyong
    Zhou, Yipeng
    Wang, Bin
    Ding, Li
    Wang, Yue
    Luo, Li
    Zhang, Yueliang
    Kong, Weiwen
    GENE, 2019, 689 : 114 - 123