Dynamics at infinity and a Hopf bifurcation arising in a quadratic system with coexisting attractors

被引:18
作者
Wang, Zhen [1 ,2 ]
Moroz, Irene [3 ]
Wei, Zhouchao [3 ]
Ren, Haipeng [2 ]
机构
[1] Xijing Univ, Sch Sci, Xian 710123, Shaanxi, Peoples R China
[2] Xian Univ Technol, Shaanxi Key Lab Complex Syst Control & Intelligen, Xian 710048, Shaanxi, Peoples R China
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 90卷 / 01期
关键词
Infinity dynamics; Hopf bifurcation; coexisting attractors; FUNCTION PROJECTIVE SYNCHRONIZATION; INVARIANT ALGEBRAIC SURFACE; ONE STABLE EQUILIBRIUM; SIMPLE CHAOTIC FLOWS; NO EQUILIBRIA; FOCI;
D O I
10.1007/s12043-017-1505-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamics at infinity and a Hopf bifurcation for a Sprott E system with a very small perturbation constant are studied in this paper. By using Poincare compactification of polynomial vector fields in R-3, the dynamics near infinity of the singularities is obtained. Furthermore, in accordance with the centre manifold theorem, the subcritical Hopf bifurcation is analysed and obtained. Numerical simulations demonstrate the correctness of the dynamical and bifurcation analyses. Moreover, by choosing appropriate parameters, this perturbed system can exhibit chaotic, quasiperiodic and periodic dynamics, as well as some coexisting attractors, such as a chaotic attractor coexisting with a periodic attractor for a > 0, and a chaotic attractor coexisting with a quasiperiodic attractor for a = 0. Coexisting attractors are not associated with an unstable equilibrium and thus often go undiscovered because they may occur in a small region of parameter space, with a small basin of attraction in the space of initial conditions.
引用
收藏
页数:10
相关论文
共 33 条
[1]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[2]  
CELIKOVSKY S, 1994, KYBERNETIKA, V30, P403
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   Hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Jafari, Sajad ;
Kapitaniak, Tomasz ;
Kuznetsov, Nikolay V. ;
Leonov, Gennady A. ;
Prasad, Awadhesh .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 :1-50
[5]  
Dumortier F, 2006, UNIVERSITEXT, P1
[6]   Simple chaotic flows with a line equilibrium [J].
Jafari, Sajad ;
Sprott, J. C. .
CHAOS SOLITONS & FRACTALS, 2013, 57 :79-84
[7]   Elementary quadratic chaotic flows with no equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Golpayegani, S. Mohammad Reza Hashemi .
PHYSICS LETTERS A, 2013, 377 (09) :699-702
[8]   Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form [J].
Kingni, S. T. ;
Jafari, S. ;
Simo, H. ;
Woafo, P. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (05) :1-16
[9]   Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor [J].
Lao, Seng-Kin ;
Shekofteh, Yasser ;
Jafari, Sajad ;
Sprott, Julien Clinton .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01)
[10]   Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion [J].
Leonov, G. A. ;
Kuznetsov, N. V. ;
Mokaev, T. N. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) :1421-1458