Local Projection FEM Stabilization for the Time-Dependent Incompressible Navier-Stokes Problem

被引:32
作者
Arndt, Daniel [1 ]
Dallmann, Helene [1 ]
Lube, Gert [1 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
关键词
incompressible flow; local projection stabilization; Navier-Stokes equations; Oseen equations; Smagorinsky model; stabilized finite elements; FINITE-ELEMENT-METHOD; EQUATIONS; FLOWS;
D O I
10.1002/num.21944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider conforming finite element (FE) approximations of the time-dependent, incompressible Navier-Stokes problem with inf-sup stable approximation of velocity and pressure. In case of high Reynolds numbers, a local projection stabilization method is considered. In particular, the idea of streamline upwinding is combined with stabilization of the divergence-free constraint. For the arising nonlinear semidiscrete problem, a stability and convergence analysis is given. Our approach improves some results of a recent paper by Matthies and Tobiska (IMA J. Numer. Anal., to appear) for the linearized model and takes partly advantage of the analysis in Burman and Fernandez, Numer. Math. 107 (2007), 39-77 for edge-stabilized FE approximation of the Navier-Stokes problem. Some numerical experiments complement the theoretical results. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1224-1250, 2015
引用
收藏
页码:1224 / 1250
页数:27
相关论文
共 22 条
[1]  
Araya R., 2013, ADV COMPUTATIONAL MA, P1
[2]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)
[3]  
Bangerth W., 2013, DEAL 2 LIB VERSION 8
[4]  
Breuer M, 2001, J TURBUL, V2, P1
[5]   Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations:: space discretization and convergence [J].
Burman, Erik ;
Fernandez, Miguel A. .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :39-77
[6]   A CONNECTION BETWEEN SCOTT-VOGELIUS AND GRAD-DIV STABILIZED TAYLOR-HOOD FE APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS [J].
Case, Michael A. ;
Ervin, Vincent J. ;
Linke, Alexander ;
Rebholz, Leo G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1461-1481
[7]  
Couzy W., 1995, EPFL, DOI [10.5075/epfl-thesis-1380, DOI 10.5075/EPFL-THESIS-1380]
[8]  
Dallmann H., 2014, SOME REMARKS LOCAL P
[9]   A quasi-local interpolation operator preserving the discrete divergence [J].
Girault, V ;
Scott, LR .
CALCOLO, 2003, 40 (01) :1-19
[10]   Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions [J].
Guermond, JL ;
Minev, P ;
Shen, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) :239-258