On the Poisson geometry of the Adler-Gel'fand-Dikii brackets

被引:6
作者
Beffa, GM [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
Adler-Gel'fand-Dikii brackets; Gelfand-Dikii brackets; Poisson geometry; transverse structures; KdV Hamiltonian structures; normal forms for ODEs with periodic coefficients;
D O I
10.1007/BF02921600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a symplectic leaf that goes through a singular point of the Adler-Gel'fand-Dikii Poisson bracket associated to SL(n, R). We End a finite-dimensional transverse section Q at the singular point and we prove that one can induce a Poisson structure on Q (the transverse structure) that is linearizable and equivalent to the Lie-Poisson structure on sl(n, R)*. This problem is closely related to finding normal forms for nth order scalar differential operators with periodic coefficient. We partially generalize a well-known result for Hill's operators to the higher order case.
引用
收藏
页码:207 / 232
页数:26
相关论文
共 16 条