Acceleration of norm-conserving Pseudopotential Plane-Wave-Based DFT Calculation on GPU using CUDA

被引:0
作者
Fathurahman, Feradi [1 ]
Alfianto, Enggar [1 ]
Dipojono, Hermawan K. [2 ]
Martoprawiro, Muhamad. A. [1 ]
机构
[1] Bandung Inst Technol, Dept Computat Sci, FMIPA, Bandung 40132, Indonesia
[2] Bandung Inst Technol, Dept Engn Phys, Bandung 40132, Indonesia
来源
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATION FOR SCIENCE AND TECHNOLOGY | 2015年 / 5卷
关键词
CUDA; Density Functional Theory; GPU; hamiltonian diagonalization; norm-conserving pseudopotential; plane wave basis set;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In present study, acceleration of density functional theory calculation using norm-conserving pseudopotential and plane wave (NCPP-PW) basis set has been performed. It did not use or parallelize commonly program packages (such as ABINIT, VASP, PWSCF, etc.) but propose prototypical program to carry out self-consistent field calculations to solve Kohn-Sham equation and focus on Hamiltonian diagonalization part by using CUDA to utilize a graphical processing unit (GPU) accelerator. The results showed that acceleration up to 10 times speed-ups for certain type of GPU, namely NVidia GTX 460, for three systems: 8 silicon atoms in cubic unit cell (small), 10 water molecules in a box (medium), and 64 silicon atoms in 2 x 2 x 2 cubic supercell (large).
引用
收藏
页码:168 / 171
页数:4
相关论文
共 7 条
[1]   Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics [J].
Bockstedte, M ;
Kley, A ;
Neugebauer, J ;
Scheffler, M .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 107 (1-3) :187-222
[2]   Large-scale ab initio calculations based on three levels of parallelization [J].
Bottin, Francois ;
Leroux, Stephane ;
Knyazev, Andrew ;
Zerah, Gilles .
COMPUTATIONAL MATERIALS SCIENCE, 2008, 42 (02) :329-336
[3]  
Davidson R. E., 1975, J COMPUT PHYS, V17, P87
[4]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615
[5]   EFFICIENT ITERATION SCHEME FOR SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATIONS [J].
KERKER, GP .
PHYSICAL REVIEW B, 1981, 23 (06) :3082-3084
[6]   EFFICACIOUS FORM FOR MODEL PSEUDOPOTENTIALS [J].
KLEINMAN, L ;
BYLANDER, DM .
PHYSICAL REVIEW LETTERS, 1982, 48 (20) :1425-1428
[7]   KSSOLV-A MATLAB Toolbox for Solving the Kohn-Sham Equations [J].
Yang, Chao ;
Meza, Juan C. ;
Lee, Byounghak ;
Wang, Lin-Wang .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2009, 36 (02)