Invariance principles for random walks conditioned to stay positive

被引:41
作者
Caravenna, Francesco [1 ]
Chaumont, Loic [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2008年 / 44卷 / 01期
关键词
random walk; stable law; Levy process; conditioning to stay positive; invariance principle;
D O I
10.1214/07-AIHP119
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {S-n} be a random walk in the domain of attraction of a stable law y, i.e. there exists a sequence of positive real numbers (a(n)) such that S-n/a(n) converges in law to y. Our main result is that the rescaled process (S-[nt]/a(n), t >= 0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Levy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.
引用
收藏
页码:170 / 190
页数:21
相关论文
共 21 条
[1]  
Alili L., 1999, STOCHASTICS STOCHAST, V66, P87
[2]  
Bertoin J., 1994, ANN PROBAB, V22, P2152
[3]   FUNCTIONAL CENTRAL LIMIT-THEOREM FOR RANDOM-WALKS CONDITIONED TO STAY POSITIVE [J].
BOLTHAUSEN, E .
ANNALS OF PROBABILITY, 1976, 4 (03) :480-485
[4]   A functional limit theorem for random walk conditioned to stay non-negative [J].
Bryn-Jones, A. ;
Doney, R. A. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :244-258
[5]   Sharp asymptotic behavior for wetting models in (1+1)-dimension [J].
Caravenna, F ;
Giacomin, G ;
Zambotti, L .
ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 :345-362
[7]  
Chaumont L, 1997, B SCI MATH, V121, P377
[8]   Conditionings and path decompositions for Levy processes [J].
Chaumont, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 64 (01) :39-54
[9]   Scaling limits of equilibrium wetting models in (1+1)-dimension [J].
Deuschel, JD ;
Giacomin, G ;
Zambotti, L .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (04) :471-500
[10]   ON THE JOINT DISTRIBUTION OF LADDER VARIABLES OF RANDOM-WALK [J].
DONEY, RA ;
GREENWOOD, PE .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 94 (04) :457-472