Bimetallic metal-organic frameworks and their derivatives

被引:394
作者
Chen, Liyu [1 ]
Wang, Hao-Fan [1 ]
Li, Caixia [1 ]
Xu, Qiang [1 ,2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, AIST Kyoto Univ Chem Energy Mat Open Innovat Lab, Sakyo Ku, Kyoto 6068501, Japan
[2] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORKS; SELECTIVE AEROBIC OXIDATION; HIGHLY EFFICIENT ELECTROCATALYSTS; COORDINATION POLYMER CRYSTALS; PHOTOCATALYTIC CO2 REDUCTION; POROUS COFE2O4 NANOCUBES; HIGH-PERFORMANCE ANODE; PRUSSIAN BLUE ANALOGS; HIGH-SURFACE-AREA; ONE-POT SYNTHESIS;
D O I
10.1039/d0sc01432j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bimetallic metal-organic frameworks (MOFs) have two different metal ions in the inorganic nodes. According to the metal distribution, the architecture of bimetallic MOFs can be classified into two main categories namely solid solution and core-shell structures. Various strategies have been developed to prepare bimetallic MOFs with controlled compositions and structures. Bimetallic MOFs show a synergistic effect and enhanced properties compared to their monometallic counterparts and have found many applications in the fields of gas adsorption, catalysis, energy storage and conversion, and luminescence sensing. Moreover, bimetallic MOFs can serve as excellent precursors/templates for the synthesis of functional nanomaterials with controlled sizes, compositions, and structures. Bimetallic MOF derivatives show exposed active sites, good stability and conductivity, enabling them to extend their applications to the catalysis of more challenging reactions and electrochemical energy storage and conversion. This review provides an overview of the significant advances in the development of bimetallic MOFs and their derivatives with special emphases on their preparation and applications.
引用
收藏
页码:5369 / 5403
页数:35
相关论文
共 50 条
  • [21] The role of metal-organic porous frameworks in dual catalysis
    Berijani, Kayhaneh
    Morsali, Ali
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (15) : 3618 - 3658
  • [22] Metal-Organic Frameworks and Their Derivative Nano Anode Materials
    Ma, Haotian
    Tian, Rujin
    Wen, Zhongsheng
    PROGRESS IN CHEMISTRY, 2023, 35 (12) : 1807 - 1846
  • [23] Metal-Organic Frameworks for Drug Delivery: A Design Perspective
    Lawson, Harrison D.
    Walton, S. Patrick
    Chan, Christina
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (06) : 7004 - 7020
  • [24] Metal-organic frameworks with multicomponents in order
    Pang, Qingqing
    Tu, Binbin
    Li, Qiaowei
    COORDINATION CHEMISTRY REVIEWS, 2019, 388 : 107 - 125
  • [25] The Chemistry and Applications of Metal-Organic Frameworks
    Furukawa, Hiroyasu
    Cordova, Kyle E.
    O'Keeffe, Michael
    Yaghi, Omar M.
    SCIENCE, 2013, 341 (6149) : 974 - +
  • [26] Flux melting of metal-organic frameworks
    Longley, Louis
    Collins, Sean M.
    Li, Shichun
    Smales, Glen J.
    Erucar, Ilknur
    Qiao, Ang
    Hou, Jingwei
    Doherty, Cara M.
    Thornton, Aaron W.
    Hill, Anita J.
    Yu, Xiao
    Terrill, Nicholas J.
    Smith, Andrew J.
    Cohen, Seth M.
    Midgley, Paul A.
    Keen, David A.
    Telfer, Shane G.
    Bennett, Thomas D.
    CHEMICAL SCIENCE, 2019, 10 (12) : 3592 - 3601
  • [27] Hydrogen storage in metal-organic frameworks
    Murray, Leslie J.
    Dinca, Mircea
    Long, Jeffrey R.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1294 - 1314
  • [28] Metal-organic frameworks for biological applications
    Lazaro, Isabel Abanades
    Chen, Xu
    Ding, Mengli
    Eskandari, Arvin
    Fairen-Jimenez, David
    Gimenez-Marques, Monica
    Gref, Ruxandra
    Lin, Wenbin
    Luo, Taokun
    Forgan, Ross S.
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [29] Metal-organic frameworks under pressure
    Collings, Ines E.
    Goodwin, Andrew L.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (18)
  • [30] Correlated disorder in metal-organic frameworks
    Meekel, Emily G.
    Goodwin, Andrew L.
    CRYSTENGCOMM, 2021, 23 (16) : 2915 - 2922