Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT

被引:71
作者
Booth, Christopher R. [2 ,3 ]
Meyer, Anne S.
Cong, Yao [3 ]
Topf, Maya
Sali, Andrej
Ludtke, Steven J. [2 ,3 ]
Chiu, Wah [2 ,3 ]
Frydman, Judith [1 ]
机构
[1] Stanford Univ, Dept Sci Biol, Stanford, CA 94305 USA
[2] Baylor Coll Med, Graduate Program Struct & Computat Biol & Mol Bio, Houston, TX 77030 USA
[3] Baylor Coll Med, Natl Ctr Macromol Imaging, Verna & Marrs Mclean Dept Biochem & Mol Biol, Houston, TX 77030 USA
基金
英国医学研究理事会;
关键词
D O I
10.1038/nsmb.1436
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
All chaperonins mediate ATP-dependent polypeptide folding by confining substrates within a central chamber. Intriguingly, the eukaryotic chaperonin TRiC ( also called CCT) uses a built-in lid to close the chamber, whereas prokaryotic chaperonins use a detachable lid. Here we determine the mechanism of lid closure in TRiC using single-particle cryo-EM and comparative protein modeling. Comparison of TRiC in its open, nucleotide-free, and closed, nucleotide-induced states reveals that the interdomain motions leading to lid closure in TRiC are radically different from those of prokaryotic chaperonins, despite their overall structural similarity. We propose that domain movements in TRiC are coordinated through unique interdomain contacts within each subunit and, further, these contacts are absent in prokaryotic chaperonins. Our findings show how different mechanical switches can evolve from a common structural framework through modification of allosteric networks.
引用
收藏
页码:746 / 753
页数:8
相关论文
共 59 条
[1]   The 2.4 angstrom crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S [J].
Boisvert, DC ;
Wang, JM ;
Otwinowski, Z ;
Horwich, AL ;
Sigler, PB .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (02) :170-177
[2]   A 9 Å single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope [J].
Booth, CR ;
Jiang, W ;
Baker, ML ;
Zhou, ZH ;
Ludtke, SJ ;
Chiu, W .
JOURNAL OF STRUCTURAL BIOLOGY, 2004, 147 (02) :116-127
[3]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[4]   Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis [J].
Brink, J ;
Ludtke, SJ ;
Kong, YF ;
Wakil, SJ ;
Ma, JP ;
Chiu, W .
STRUCTURE, 2004, 12 (02) :185-191
[5]   Dual function of protein confinement in chaperonin-assisted protein folding [J].
Brinker, A ;
Pfeifer, G ;
Kerner, MJ ;
Naylor, DJ ;
Hartl, FU ;
Hayer-Hartl, M .
CELL, 2001, 107 (02) :223-233
[6]   HARMONIC DYNAMICS OF PROTEINS - NORMAL-MODES AND FLUCTUATIONS IN BOVINE PANCREATIC TRYPSIN-INHIBITOR [J].
BROOKS, B ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (21) :6571-6575
[7]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[8]   Mega-Dalton biomolecular motion captured from electron microscopy reconstructions [J].
Chacón, P ;
Tama, F ;
Wriggers, W .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (02) :485-492
[9]   Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT [J].
Ditzel, L ;
Löwe, J ;
Stock, D ;
Stetter, KO ;
Huber, H ;
Huber, R ;
Steinbacher, S .
CELL, 1998, 93 (01) :125-138
[10]   Principles of protein folding, misfolding and aggregation [J].
Dobson, CM .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2004, 15 (01) :3-16