Cloud thermodynamic phase detection using an all-sky imaging polarimeter

被引:2
作者
Dahl, Laura M. [1 ]
Tauc, Martin Jan [1 ]
Shaw, Joseph A. [1 ]
机构
[1] Montana State Univ, Dept Elect & Comp Engn, 610 Cobleigh Hall, Bozeman, MT 59717 USA
来源
POLARIZATION SCIENCE AND REMOTE SENSING VIII | 2017年 / 10407卷
关键词
Skylight polarization; cloud polarization; polarization imaging; thermodynamic cloud phase; SKYLIGHT POLARIZATION; RADIANCE; WATER; RADIOMETERS; PRODUCTS; EXAMPLES;
D O I
10.1117/12.2274354
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
At any given time, clouds cover approximately 60% of the Earth's surface and they strongly influence weather and climate; however, they are one of the largest sources of uncertainty in climate models and predictions of atmospheric effects on remote sensing measurements. Knowing the cloud thermodynamic phase - whether a cloud is composed of ice crystals or liquid particles - is critical in these applications. Knobelspiesse et al. (Atmos. Meas. Tech., 8, 1537-1554, 2015) showed theoretically that the sign of the S-1 Stokes parameter can be used to detect cloud thermodynamic phase when observed with a ground-based passive polarimeter and demonstrated this principle with a zenith-viewing polarimeter. In this theory, a positive S1 value indicates a liquid cloud, while a negative S1 value indicates an ice cloud. In this paper, we report the use of our all-sky polarimeter, operating at 450 nm (10 nm band) to detect ice, liquid, and multi-layered clouds. The cloud thermodynamic phase was independently verified with a dual-polarization lidar pointed at the zenith.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
[Anonymous], CLIMATE CHANGE 2013
[2]   Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network [J].
Chiu, J. C. ;
Marshak, A. ;
Huang, C. -H. ;
Varnai, T. ;
Hogan, R. J. ;
Giles, D. M. ;
Holben, B. N. ;
O'Connor, E. J. ;
Knyazikhin, Y. ;
Wiscombe, W. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (21) :10313-10329
[3]   Visible-to-SWIR wavelength variation of skylight polarization [J].
Dahl, Laura M. ;
Shaw, Joseph A. .
POLARIZATION SCIENCE AND REMOTE SENSING VII, 2015, 9613
[4]   Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory [J].
Dahlberg, Andrew R. ;
Pust, Nathan J. ;
Shaw, Joseph A. .
OPTICS EXPRESS, 2011, 19 (17) :16008-16021
[5]   Cloud particle phase determination with the AVHRR [J].
Key, JR ;
Intrieri, JM .
JOURNAL OF APPLIED METEOROLOGY, 2000, 39 (10) :1797-1804
[6]   Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers [J].
Knobelspiesse, K. ;
van Diedenhoven, B. ;
Marshak, A. ;
Dunagan, S. ;
Holben, B. ;
Slutsker, I. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (03) :1537-1554
[7]   The MODIS cloud products:: Algorithms and examples from Terra [J].
Platnick, S ;
King, MD ;
Ackerman, SA ;
Menzel, WP ;
Baum, BA ;
Riédi, JC ;
Frey, RA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :459-473
[8]   Dual-field imaging polarimeter using liquid crystal variable retarders [J].
Pust, Nathan J. ;
Shaw, Joseph A. .
APPLIED OPTICS, 2006, 45 (22) :5470-5478
[9]   Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products [J].
Pust, Nathan J. ;
Dahlberg, Andrew R. ;
Thomas, Michael J. ;
Shaw, Joseph A. .
OPTICS EXPRESS, 2011, 19 (19) :18602-18613
[10]   Digital all-sky polarization imaging of partly cloudy skies [J].
Pust, Nathan J. ;
Shaw, Joseph A. .
APPLIED OPTICS, 2008, 47 (34) :H190-H198