An invariance principle in large population stochastic dynamic games

被引:67
作者
Huang, Minyi [1 ]
Caines, Peter E. [2 ]
Malhame, Roland P. [3 ]
机构
[1] Australian Natl Univ, Res Sch Informat Sci & Engn, Dept Informat Engn, Canberra, ACT 0200, Australia
[2] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2A7, Canada
[3] Ecole Polytech, Dept Elect Engn, Montreal, PQ H3C 3A7, Canada
关键词
large population; martingale representation; Nash equilibrium; optimal control; stochastic dynamic games;
D O I
10.1007/s11424-007-9015-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study large population stochastic dynamic games where the so-called Nash certainty equivalence based control laws are implemented by the individual players. We first show a martingale property for the limiting control problem of a single agent and then perform averaging across the population; this procedure leads to a constant value for the martingale which shows an invariance property of the population behavior induced by the Nash strategies.
引用
收藏
页码:162 / 172
页数:11
相关论文
共 16 条
[1]  
ALIKHAN M, 2002, HDB GEME THEORY EC A, V3
[2]  
Basar T., 1995, Dynamic Noncooperative Game Theory
[3]  
Bensoussan A., 1992, STOCHASTIC CONTROL P
[4]   OPTIMAL-CONTROL OF JUMP PROCESSES [J].
BOEL, R ;
VARAIYA, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (01) :92-119
[5]   DYNAMIC PROGRAMMING CONDITIONS FOR PARTIALLY OBSERVABLE STOCHASTIC SYSTEMS [J].
DAVIS, MHA ;
VARAIYA, P .
SIAM JOURNAL ON CONTROL, 1973, 11 (02) :226-261
[6]  
Dawson D. A., 1987, Stochastics, V20, P247, DOI 10.1080/17442508708833446
[7]   DIFFERENTIAL GAME MODELS OF ADVERTISING COMPETITION [J].
ERICKSON, GM .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 83 (03) :431-438
[8]   CONTINUUM AND FINITE-PLAYER NONCOOPERATIVE MODELS OF COMPETITION [J].
GREEN, EJ .
ECONOMETRICA, 1984, 52 (04) :975-993
[9]  
HUANG M, 2007, IN PRESS COMMUNICATI
[10]  
HUANG M, 2007, IN PRESS IEEE T AUTO, V52