Competing Abelian and non-Abelian topological orders in ν=1/3+1/3 quantum Hall bilayers

被引:36
作者
Geraedts, Scott [1 ,2 ]
Zaletel, Michael P. [3 ,4 ]
Papic, Zlatko [5 ,6 ]
Mong, Roger S. K. [1 ,2 ,7 ,8 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[4] Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[6] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[7] Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[8] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
FRACTIONAL QUANTIZATION; INCOMPRESSIBLE STATES; MAJORANA FERMIONS; PHASE-TRANSITION; GROUND-STATE; LANDAU-LEVEL; NANOWIRE; SUPERCONDUCTOR; STATISTICS; CONDENSATION;
D O I
10.1103/PhysRevB.91.205139
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bilayer quantum Hall systems, realized either in two separated wells or in the lowest two subbands of a wide quantum well, provide an experimentally realizable way to tune between competing quantum orders at the same filling fraction. Using newly developed density matrix renormalization group techniques combined with exact diagonalization, we return to the problem of quantum Hall bilayers at filling nu = 1/3 + 1/3. We first consider the Coulomb interaction at bilayer separation d, bilayer tunneling energy Delta(SAS), and individual layer width w, where we find a phase diagram which includes three competing Abelian phases: a bilayer Laughlin phase (two nearly decoupled nu = 1/3 layers), a bilayer spin-singlet phase, and a bilayer symmetric phase. We also study the order of the transitions between these phases. A variety of non-Abelian phases has also been proposed for these systems. While absent in the simplest phase diagram, by slightly modifying the interlayer repulsion we find a robust non-Abelian phase which we identify as the "interlayer-Pfaffian" phase. In addition to non-Abelian statistics similar to the Moore-Read state, it exhibits a novel form of bilayer-spin charge separation. Our results suggest that nu = 1/3 + 1/3 systems merit further experimental study.
引用
收藏
页数:16
相关论文
共 123 条
[1]   Structure of spinful quantum Hall states: A squeezing perspective [J].
Ardonne, E. ;
Regnault, N. .
PHYSICAL REVIEW B, 2011, 84 (20)
[2]   Separation of spin and charge in paired spin-singlet quantum Hall states [J].
Ardonne, E ;
van Lankvelt, FJM ;
Ludwig, AWW ;
Schoutens, K .
PHYSICAL REVIEW B, 2002, 65 (04) :1-4
[3]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[4]   Phase diagram of fractional quantum Hall effect of composite fermions in multicomponent systems [J].
Balram, Ajit C. ;
Toke, Csaba ;
Wojs, A. ;
Jain, J. K. .
PHYSICAL REVIEW B, 2015, 91 (04)
[5]   Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems [J].
Barkeshli, Maissam ;
Qi, Xiao-Liang .
PHYSICAL REVIEW X, 2014, 4 (04)
[6]   Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states [J].
Barkeshli, Maissam ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2011, 84 (11)
[7]   Non-Abelian two-component fractional quantum Hall states [J].
Barkeshli, Maissam ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2010, 82 (23)
[8]   Quantum hall system in Tao-Thouless limit [J].
Bergholtz, E. J. ;
Karlhede, A. .
PHYSICAL REVIEW B, 2008, 77 (15)
[9]   Effect of Landau level mixing on the effective interaction between electrons in the fractional quantum Hall regime [J].
Bishara, Waheb ;
Nayak, Chetan .
PHYSICAL REVIEW B, 2009, 80 (12)
[10]   Valley polarization and susceptibility of composite fermions around a filling factor v = 3/2 [J].
Bishop, N. C. ;
Padmanabhan, M. ;
Vakili, K. ;
Shkolnikov, Y. P. ;
De Poortere, E. P. ;
Shayegan, M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (26)