Strain energy release rate and mode-I delamination growth in carbon-graphene/epoxy hybrid nanocomposites

被引:2
作者
Hawkins, David A., Jr. [1 ]
Haque, Anwarul [1 ]
机构
[1] Univ Alabama, 245 7th Ave, Tuscaloosa, AL 35401 USA
来源
6th BSME International Conference on Thermal Engineering | 2015年 / 105卷
关键词
Strain energy release rate; delamination growth; nanocomposites; graphene nanoparticles; double cantilever beam; FRACTURE-TOUGHNESS; COMPOSITES;
D O I
10.1016/j.proeng.2015.05.080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of graphene reinforcement in strain energy release rate (G(IC)) and Mode-I delamination growth in carbongraphene/epoxy (CG-Ep) hybrid nanocomposites have been studied using the double cantilever beam (DCB) test. The specimens of carbon/epoxy (C-Ep) and CG-Ep nanocomposites were manufactured using vacuum assisted manual lay-up method. DCB tests were conducted in a displacement controlled mode to achieve stable delamination growth under static loading. At the onset of delamination growth, the load ((Pcr)) and the total opening displacement (delta(cr)) were recorded. The total compliance of the DCB specimen was obtained using, C = delta/P. P-cr and delta(cr) are recorded as a function of the delamination length (a). Plots of critical loads and compliances as a function of the delamination size were used in computing G(IC), the Mode-I critical strain energy release rate. The delaminated zone was studied through fractographic examinations and surface roughness measurement. The results show improved G(IC) of CG-Ep nanocomposites in comparison to traditional C-Ep composites. The fractured surface of CG-Ep shows undulated surface with increased roughness which possibly contributed in crack deflection mechanisms. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:829 / 834
页数:6
相关论文
共 10 条
[1]  
ASTM International, 2024, American Society for Testing and Materials
[2]   Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites [J].
Bekyarova, E. ;
Thostenson, E. T. ;
Yu, A. ;
Kim, H. ;
Gao, J. ;
Tang, J. ;
Hahn, H. T. ;
Chou, T. -W. ;
Itkis, M. E. ;
Haddon, R. C. .
LANGMUIR, 2007, 23 (07) :3970-3974
[3]   Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes [J].
Kepple, K. L. ;
Sanborn, G. P. ;
Lacasse, P. A. ;
Gruenberg, K. M. ;
Ready, W. J. .
CARBON, 2008, 46 (15) :2026-2033
[4]   Translaminar fracture toughness testing of composites: A review [J].
Laffan, M. J. ;
Pinho, S. T. ;
Robinson, P. ;
McMillan, A. J. .
POLYMER TESTING, 2012, 31 (03) :481-489
[5]   The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue [J].
Morais, J. J. L. ;
de Moura, M. F. S. F. ;
Pereira, F. A. M. ;
Xavier, J. ;
Dourado, N. ;
Dias, M. I. R. ;
Azevedo, J. M. T. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2010, 3 (06) :446-453
[6]   Fracture and Fatigue in Graphene Nanocomposites [J].
Rafiee, Mohammad A. ;
Rafiee, Javad ;
Srivastava, Iti ;
Wang, Zhou ;
Song, Huaihe ;
Yu, Zhong-Zhen ;
Koratkar, Nikhil .
SMALL, 2010, 6 (02) :179-183
[7]  
Rahman R., 2013, AM SOC COMP 28 TECHN
[8]  
Ramkumar RL, 1983, 166046 NASA
[9]   Graphene: A Novel Carbon Nanomaterial [J].
Tkachev, S. V. ;
Buslaeva, E. Yu. ;
Gubin, S. P. .
INORGANIC MATERIALS, 2011, 47 (01) :1-10
[10]   Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites [J].
Xu, Yuan ;
Van Hoa, Suong .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (3-4) :854-861