Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces

被引:77
作者
Jiang, DQ
Chu, JF
O'Regan, D
Agarwal, RP [1 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
[3] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
基金
中国国家自然科学基金;
关键词
superlinear singular periodic problem; positive solution; Leray-Schauder alternative; fixed point theorem in cones;
D O I
10.1016/S0022-247X(03)00493-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces is discussed in this paper. Our nonlinearity may be singular in its dependent variable and our analysis relies on a nonlinear alternative of Leray-Schauder type and on a fixed point theorem in cones. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:563 / 576
页数:14
相关论文
共 12 条
[1]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[2]   T-PERIODIC SOLUTIONS FOR SOME 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
DELPINO, M ;
MANASEVICH, R ;
MONTERO, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 :231-243
[3]   INFINITELY MANY T-PERIODIC SOLUTIONS FOR A PROBLEM ARISING IN NONLINEAR ELASTICITY [J].
DELPINO, MA ;
MANASEVICH, RF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :260-277
[4]   SUBHARMONIC SOLUTIONS FOR SOME 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
FONDA, A ;
MANASEVICH, R ;
ZANOLIN, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (05) :1294-1311
[5]   CONSERVATIVE DYNAMICAL-SYSTEMS INVOLVING STRONG FORCES [J].
GORDON, WB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :113-135
[6]  
JIANG DQ, 1998, ACTA MATH SCI, V18, P31
[7]   PERIODIC-SOLUTIONS TO SOME PROBLEMS OF N-BODY TYPE [J].
MAJER, P ;
TERRACINI, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) :381-404
[8]  
O'Regan D., 1997, Existence Theory for nonlinear ordinary differential equations
[9]   A singular nonlinear second-order periodic boundary value problem [J].
Wang, JY ;
Jiang, DQ .
TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (02) :203-210
[10]   Periodic solutions of Lienard equations with singular forces of repulsive type [J].
Zhang, MR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (01) :254-269