regression discontinuity design;
causal inference;
local average treatment effect;
informative priors;
D O I:
10.1002/sim.6486
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The regression discontinuity (RD) design is a quasi-experimental design that estimates the causal effects of a treatment by exploiting naturally occurring treatment rules. It can be applied in any context where a particular treatment or intervention is administered according to a pre-specified rule linked to a continuous variable. Such thresholds are common in primary care drug prescription where the RD design can be used to estimate the causal effect of medication in the general population. Such results can then be contrasted to those obtained from randomised controlled trials (RCTs) and inform prescription policy and guidelines based on a more realistic and less expensive context. In this paper, we focus on statins, a class of cholesterol-lowering drugs, however, the methodology can be applied to many other drugs provided these are prescribed in accordance to pre-determined guidelines. Current guidelines in the UK state that statins should be prescribed to patients with 10-year cardiovascular disease risk scores in excess of 20%. If we consider patients whose risk scores are close to the 20%risk score threshold, we find that there is an element of random variation in both the risk score itself and its measurement. We can therefore consider the threshold as a randomising device that assigns statin prescription to individuals just above the threshold and withholds it from those just below. Thus, we are effectively replicating the conditions of an RCT in the area around the threshold, removing or at least mitigating confounding. We frame the RD design in the language of conditional independence, which clarifies the assumptions necessary to apply an RD design to data, and which makes the links with instrumental variables clear. We also have context-specific knowledge about the expected sizes of the effects of statin prescription and are thus able to incorporate this into Bayesian models by formulating informative priors on our causal parameters. (c) 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
机构:
UCL, Dept Stat Sci, London, EnglandUCL, Dept Stat Sci, London, England
Adeleke, Mariam O.
O'Keeffe, Aidan G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham, Sch Math Sci, Nottingham, England
UCL, Inst Epidemiol & Hlth Care, London, England
Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, EnglandUCL, Dept Stat Sci, London, England
O'Keeffe, Aidan G.
Baio, Gianluca
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Stat Sci, London, EnglandUCL, Dept Stat Sci, London, England
机构:
Boston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02118 USA
Africa Hlth Res Inst, Somkhele, South Africa
Univ Witwatersrand, Sch Clin Med, Dept Internal Med, Fac Hlth Sci,Hlth Econ & Epidemiol Res Off, Johannesburg, South AfricaBoston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Bor, Jacob
Fox, Matthew P.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02118 USA
Univ Witwatersrand, Sch Clin Med, Dept Internal Med, Fac Hlth Sci,Hlth Econ & Epidemiol Res Off, Johannesburg, South AfricaBoston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Fox, Matthew P.
Rosen, Sydney
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Univ Witwatersrand, Sch Clin Med, Dept Internal Med, Fac Hlth Sci,Hlth Econ & Epidemiol Res Off, Johannesburg, South AfricaBoston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Rosen, Sydney
Venkataramani, Atheendar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Perelman Sch Med, Dept Med Eth & Hlth Policy, Philadelphia, PA 19104 USABoston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Venkataramani, Atheendar
论文数: 引用数:
h-index:
机构:
Tanser, Frank
Pillay, Deenan
论文数: 0引用数: 0
h-index: 0
机构:
Africa Hlth Res Inst, Somkhele, South Africa
UCL, Dept Virol, London, EnglandBoston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
Pillay, Deenan
Baernighausen, Till
论文数: 0引用数: 0
h-index: 0
机构:
Africa Hlth Res Inst, Somkhele, South Africa
UCL, Res Dept Infect & Populat Hlth, London, England
Harvard TH Chan Sch Publ Hlth, Dept Global Hlth & Populat, Boston, MA USA
Heidelberg Univ, Inst Publ Hlth, Heidelberg, GermanyBoston Univ, Sch Publ Hlth, Dept Global Hlth, Boston, MA 02118 USA
机构:
Univ Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
Univ Leeds, Fac Med & Hlth, Leeds, W Yorkshire, England
Alan Turing Inst, London, EnglandUniv Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
Tennant, P. W. G.
Doxford-Hook, E.
论文数: 0引用数: 0
h-index: 0
机构:
Calderdale & Huddersfield Fdn Trust, Huddersfield, W Yorkshire, EnglandUniv Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
Doxford-Hook, E.
Flynn, L.
论文数: 0引用数: 0
h-index: 0
机构:
Calderdale & Huddersfield Fdn Trust, Huddersfield, W Yorkshire, EnglandUniv Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
Flynn, L.
Kershaw, K.
论文数: 0引用数: 0
h-index: 0
机构:
Calderdale & Huddersfield Fdn Trust, Huddersfield, W Yorkshire, EnglandUniv Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
Kershaw, K.
Goddard, J.
论文数: 0引用数: 0
h-index: 0
机构:
Calderdale & Huddersfield Fdn Trust, Huddersfield, W Yorkshire, EnglandUniv Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
Goddard, J.
Stacey, T.
论文数: 0引用数: 0
h-index: 0
机构:
Calderdale & Huddersfield Fdn Trust, Huddersfield, W Yorkshire, England
Univ Huddersfield, Sch Human & Hlth Sci, Huddersfield, W Yorkshire, EnglandUniv Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
Seo, Jaehyun
Kim, Chanmin
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea