Discrete polynuclear growth and determinantal processes

被引:274
作者
Johansson, K [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1007/s00220-003-0945-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a discrete polynuclear growth (PNG) process and prove a functional limit theorem for its convergence to the Airy process. This generalizes previous results by Prahofer and Spohn. The result enables us to express the F-1 GOE Tracy-Widom distribution in terms of the Airy process. We also show some results, and give a conjecture, about the transversal fluctuations in a point to line last passage percolation problem. Furthermore we discuss a rather general class of measures given by products of determinants and show that these measures have determinantal correlation functions.
引用
收藏
页码:277 / 329
页数:53
相关论文
共 39 条
[21]  
JOHANSSON K, MATHPR0306216
[22]  
JOHANSSON K, 2001, EUROPEAN C MATH, V1
[23]   Local statistics of lattice dimers [J].
Kenyon, R .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (05) :591-618
[24]  
KONIG W, 2002, ELECT J PROBAB, V7
[25]  
KRUG J, 1992, SOLIDS FAR EQUILIBRI, P479
[26]   UNIVERSAL PARAMETRIC CORRELATIONS AT THE SOFT EDGE OF THE SPECTRUM OF RANDOM-MATRIX ENSEMBLES [J].
MACEDO, AMS .
EUROPHYSICS LETTERS, 1994, 26 (09) :641-646
[27]  
Mehta M. L., 1991, Random Matrices, V2nd
[28]  
NAGLE JF, 1989, PHASE TRANSITIONS CR, V13
[29]   Infinite wedge and random partitions [J].
Okounkov A. .
Selecta Mathematica, 2001, 7 (1) :57-81
[30]  
OKOUNKOV A, MATHCO0107056