Discrete polynuclear growth and determinantal processes

被引:272
作者
Johansson, K [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1007/s00220-003-0945-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a discrete polynuclear growth (PNG) process and prove a functional limit theorem for its convergence to the Airy process. This generalizes previous results by Prahofer and Spohn. The result enables us to express the F-1 GOE Tracy-Widom distribution in terms of the Airy process. We also show some results, and give a conjecture, about the transversal fluctuations in a point to line last passage percolation problem. Furthermore we discuss a rather general class of measures given by products of determinants and show that these measures have determinantal correlation functions.
引用
收藏
页码:277 / 329
页数:53
相关论文
共 39 条
[1]   The spectrum of coupled random matrices [J].
Adler, M ;
Van Moerbeke, P .
ANNALS OF MATHEMATICS, 1999, 149 (03) :921-976
[2]  
[Anonymous], SYMMETRIC GROUP
[3]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[4]  
Baik J., 2001, ADV THEOR MATH PHYS, V5, P1207
[5]  
Baik J., 2001, MSRI PUBLICATIONS, V40
[6]   GUEs and queues [J].
Baryshnikov, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (02) :256-274
[7]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[8]   Biorthogonal ensembles [J].
Borodin, A .
NUCLEAR PHYSICS B, 1998, 536 (03) :704-732
[9]  
Bottcher A., 1999, INTRO LARGE TRUNCATE
[10]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+