Decomposition of polytopes and polynomials

被引:31
作者
Gao, S [1 ]
Lauder, AGB
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1007/s00454-001-0024-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by a connection with the factorization of multivariate polynomials, we study integral convex polytopes and their integral decompositions in the sense of the Minkowski sum. We first show that deciding decomposability of integral polygons is NP-complete then present a pseudo-polynomial-time algorithm for decomposing polygons. For higher-dimensional polytopes, we give a heuristic algorithm which is based upon projections and uses randomization. Applications of our algorithms include absolute irreducibility testing and factorization of polynomials via their Newton polytopes.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 29 条
  • [1] [Anonymous], 1997, HDB DISCRETE COMPUTA
  • [2] [Anonymous], 1993, HDB CONVEX GEOMETRY
  • [3] ABSOLUTE FACTORIZATION OF POLYNOMIALS - A GEOMETRIC APPROACH
    DUVAL, D
    [J]. SIAM JOURNAL ON COMPUTING, 1991, 20 (01) : 1 - 21
  • [4] EWALD G, 1996, COMBINATORIAL CONVEX, V168
  • [5] Gale D., 1954, P INT C MATH AMSTERD, VII, P217
  • [6] GAO S, IN PRESS J ALGEBRA
  • [7] GAO S, FACTORING MULTIVARIA
  • [8] GAO S, FAST ABSOLUTE IRREDU
  • [9] Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
  • [10] Graham R. L., 1972, Information Processing Letters, V1, P132, DOI 10.1016/0020-0190(72)90045-2