Crustal Structure, Tectonic Subsidence, and Lithospheric Stretching of the Princess Elizabeth Trough Basin, East Antarctica

被引:2
作者
Leitchenkov, G. L. [1 ,2 ]
Galushkin, Yu. I. [3 ]
Guseva, Yu. B. [4 ]
Gandyukhin, V. V. [4 ]
Dubinin, E. P. [3 ]
机构
[1] Gramberg Res Inst Geol & Mineral Resources World, St Petersburg 190121, Russia
[2] St Petersburg State Univ, Inst Earth Sci, St Petersburg 199034, Russia
[3] Moscow MV Lomonosov State Univ, Museum Nat Hist, Moscow 119991, Russia
[4] Polar Marine Geosurvey Expedit, St Petersburg 198412, Russia
基金
俄罗斯科学基金会;
关键词
East Antarctica; Princess Elizabeth Trough; passive margin; lithosphere; rifting; crustal stretching; sedimentary basin; tectonic subsidence; numerical modeling; CONTINENTAL-MARGIN; THERMAL STRUCTURE; HEAT-FLOW; EVOLUTION; GENERATION; HISTORY; CLIMATE;
D O I
10.1134/S0016852119060074
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper considers the crustal structure, seismic stratigraphy, thermal evolution, and lithospheric stretching of the deep-water basin located on the East Antarctic passive margin in the Princess Elizabeth Trough. Seven of Middle Jurassic to Quaternary seismic sequences were identified based on interpretation of multichannel seismic data. The information about seismic stratigraphy and crustal thickness (calculated from gravity data) along the section crossing the Princess Elizabeth Trough was used for numerical modeling of the thermal regime of the lithosphere, tectonic subsidence of the crystalline basement, and lithospheric stretching. Modeling shows that calculated tectonic subsidence is possible only under the assumption of crustal extension before the deposition (during crustal doming at the early rift phase). The maximum stretching factor in the basin ranges from 1.1 to 2.0 for the period that preceded the deposition and 2.8 for the period of rift-related deposition.
引用
收藏
页码:726 / 737
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 2002, GEOLOGICAL FRAMEWORK
[2]   GEOTHERMS, EVOLUTION OF THE LITHOSPHERE AND PLATE-TECTONICS [J].
BAER, AJ .
TECTONOPHYSICS, 1981, 72 (3-4) :203-227
[3]   Combined Gravimetric-Seismic Crustal Model for Antarctica [J].
Baranov, Alexey ;
Tenzer, Robert ;
Bagherbandi, Mohammad .
SURVEYS IN GEOPHYSICS, 2018, 39 (01) :23-56
[4]  
Barrett PJ, 2007, SPEC PUBL INT ASS SE, V39, P259
[5]   Kerguelen hotspot magma output since 130 Ma [J].
Coffin, MF ;
Pringle, MS ;
Duncan, RA ;
Gladczenko, TP ;
Storey, M ;
Müller, RD ;
Gahagan, LA .
JOURNAL OF PETROLOGY, 2002, 43 (07) :1121-1139
[6]   COMPARISON OF LONG-TERM GREENHOUSE PROJECTIONS WITH THE GEOLOGIC RECORD [J].
CROWLEY, TJ ;
KIM, KY .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (08) :933-936
[7]  
Galushkin Yu. I., 2007, MODELING SEDIMENTARY
[8]  
Galushkin Yu. I., 2016, NONSTANDARD PROBLEMS
[9]  
Gohl K., 2007, ANTARCTICA KEYSTONE, DOI DOI 10.3133/OF2007-1047.SRP039
[10]   New continental margin magnetic anomalies of East Antarctica [J].
Golynsky, A. V. ;
Ivanov, S. V. ;
Kazankov, A. Ju. ;
Jokat, W. ;
Masolov, V. N. ;
von Frese, R. R. B. .
TECTONOPHYSICS, 2013, 585 :172-184