Dirichlet boundary value correction using Lagrange multipliers

被引:10
作者
Burman, Erik [1 ]
Hansbo, Peter [2 ]
Larson, Mats G. [3 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Jonkoping Univ, Mech Engn, S-55111 Jonkoping, Sweden
[3] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
Boundary value correction; Lagrange multiplier; Dirichlet boundary conditions;
D O I
10.1007/s10543-019-00773-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a boundary value correction approach for cases when curved boundaries are approximated by straight lines (planes) and Lagrange multipliers are used to enforce Dirichlet boundary conditions. The approach allows for optimal order convergence for polynomial order up to 3. We show the relation to a Taylor series expansion approach previously used in the context of Nitsche's method and, in the case of inf-sup stable multiplier methods, prove a priori error estimates with explicit dependence on the meshsize and distance between the exact and approximate boundary.
引用
收藏
页码:235 / 260
页数:26
相关论文
共 16 条
[1]  
[Anonymous], 1974, Mathematical Aspects of Finite Elements in Partial Differential Equations
[2]  
[Anonymous], 1998, E W J NUMERICAL MATH
[3]  
Ben Belgacem F., 1997, RAIRO MODEL MATH ANA, V31, P289
[4]   Fictitious domain method with boundary value correction using penalty-free Nitsche method [J].
Boiveau, Thomas ;
Burman, Erik ;
Claus, Susanne ;
Larson, Mats .
JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (02) :77-95
[5]   PROJECTION METHODS FOR DIRICHLETS PROBLEM IN APPROXIMATING POLYGONAL DOMAINS WITH BOUNDARY-VALUE CORRECTIONS [J].
BRAMBLE, JH ;
DUPONT, T ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1972, 26 (120) :869-879
[6]  
Burman Erik, 2019, Numerical Mathematics and Advanced Applications ENUMATH 2017. Lecture Notes in Computational Science and Engineering (LNCSE 126), P183, DOI 10.1007/978-3-319-96415-7_15
[7]   Deriving Robust Unfitted Finite Element Methods from Augmented Lagrangian Formulations [J].
Burman, Erik ;
Hansbo, Peter .
GEOMETRICALLY UNFITTED FINITE ELEMENT METHODS AND APPLICATIONS, 2017, 121 :1-24
[8]   A CUT FINITE ELEMENT METHOD WITH BOUNDARY VALUE CORRECTION [J].
Burman, Erik ;
Hansbo, Peter ;
Larson, Mats G. .
MATHEMATICS OF COMPUTATION, 2018, 87 (310) :633-657
[9]   FINITE ELEMENT QUASI-INTERPOLATION AND BEST APPROXIMATION [J].
Ern, Alexandre ;
Guermond, Jean-Luc .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04) :1367-1385
[10]  
Gilbarg D., 2001, CLASSICS MATH, DOI 10.1007/978-3-642-61798-0