Emerging dynamic memristors for neuromorphic reservoir computing

被引:71
作者
Cao, Jie [1 ,2 ]
Zhang, Xumeng [1 ,2 ,3 ]
Cheng, Hongfei [4 ]
Qiu, Jie [1 ]
Liu, Xusheng [1 ,2 ]
Wang, Ming [1 ,3 ]
Liu, Qi [1 ,2 ,3 ]
机构
[1] Fudan Univ, Zhangjiang Fudan Int Innovat Ctr, Frontier Inst Chip & Syst, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
[3] Shanghai Qi Zhi Inst, 41th Floor,AI Tower,701 Yunjin Rd, Shanghai 200232, Peoples R China
[4] Inst Mat Res & Engn A STAR, 2 Fusionopolis Way, Singapore 138634, Singapore
基金
中国国家自然科学基金;
关键词
DEVICE; STATE;
D O I
10.1039/d1nr06680c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reservoir computing (RC), as a brain-inspired neuromorphic computing algorithm, is capable of fast and energy-efficient temporal data analysis and prediction. Hardware implementation of RC systems can significantly reduce the computing time and energy, but it is hindered by current physical devices. Recently, dynamic memristors have proved to be promising for hardware implementation of such systems, benefiting from their fast and low-energy switching, nonlinear dynamics, and short-term memory behavior. In this work, we review striking results that leverage dynamic memristors to enhance the data processing abilities of RC systems based on resistive switching devices and magnetoresistive devices. The critical characteristic parameters of memristors affecting the performance of RC systems, such as reservoir size and decay time, are identified and discussed. Finally, we summarize the challenges this field faces in reliable and accurate task processing, and forecast the future directions of RC systems.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 68 条
[1]   Synaptic computation [J].
Abbott, LF ;
Regehr, WG .
NATURE, 2004, 431 (7010) :796-803
[2]   FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting [J].
Alomar, Miquel L. ;
Canals, Vincent ;
Perez-Mora, Nicolas ;
Martinez-Moll, Victor ;
Rossello, Josep L. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
[3]   Robust Deep Reservoir Computing Through Reliable Memristor With Improved Heat Dissipation Capability [J].
An, Hongyu ;
Al-Mamun, Mohammad Shah ;
Orlowski, Marius K. ;
Liu, Lingjia ;
Yi, Yang .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2021, 40 (03) :574-583
[4]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[5]   Constructing optimized binary masks for reservoir computing with delay systems [J].
Appeltant, Lennert ;
Van der Sande, Guy ;
Danckaert, Jan ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2014, 4
[6]  
BOGDANOV AN, 1989, ZH EKSP TEOR FIZ+, V95, P178
[7]   Integer factorization using stochastic magnetic tunnel junctions [J].
Borders, William A. ;
Pervaiz, Ahmed Z. ;
Fukami, Shunsuke ;
Camsari, Kerem Y. ;
Ohno, Hideo ;
Datta, Supriyo .
NATURE, 2019, 573 (7774) :390-+
[8]   Potential implementation of reservoir computing models based on magnetic skyrmions [J].
Bourianoff, George ;
Pinna, Daniele ;
Sitte, Matthias ;
Everschor-Sitte, Karin .
AIP ADVANCES, 2018, 8 (05)
[9]   Modulating the percolation network of polymer nanocomposites for flexible sensors [J].
Cao, Jie ;
Zhang, Xinxing .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (22)
[10]   Ultrarobust Ti3C2Tx MXene-Based Soft Actuators via Bamboo-Inspired Mesoscale Assembly of Hybrid Nanostructures [J].
Cao, Jie ;
Zhou, Zehang ;
Song, Quancheng ;
Chen, Keyu ;
Su, Gehong ;
Zhou, Tao ;
Zheng, Zhuo ;
Lu, Canhui ;
Zhang, Xinxing .
ACS NANO, 2020, 14 (06) :7055-7065