Remarks on Existence/Nonexistence of Analytic Solutions to Higher Order KdV Equations

被引:2
作者
Karczewska, A. [1 ]
Rozmej, P. [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Z Szafrana 4a, PL-65246 Zielona Gora, Poland
[2] Univ Zielona Gora, Fac Phys & Astron, Inst Phys, Z Szafrana 4a, PL-65246 Zielona Gora, Poland
关键词
shallow water waves; extended KdV equations; analytic solutions; SOLITARY WAVES; SUPERPOSITION; SOLITONS;
D O I
10.12693/APhysPolA.136.910
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note, we discuss the existence of analytic solutions to the nonlinear wave equations of the higher order than the ubiquitous Korteweg-de Vries equation. First, we recall our recent results which show that the extended Korteweg-de Vries equation, that is, the equation obtained within second-order perturbation approach possesses three kinds of analytic solutions. These solutions have the same functional form as the corresponding Korteweg-de Vries solutions. We show, however, that the most intriguing multi-soliton solutions, known for the Korteweg-de Vries equation, do not exist for extended Korteweg-de Vries equation. Moreover, we show that for the equations obtained in the third order perturbation approach (and then in any higher order) analytic solutions in the forms known from Korteweg-de Vries theory do not exist.
引用
收藏
页码:910 / 915
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1895, Philos. Mag, DOI [10.1080/14786435.2010.547337, DOI 10.1080/14786435.2010.547337, DOI 10.1080/14786449508620739]
[2]   Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework [J].
Bridges, TJ ;
Derks, G ;
Gottwald, G .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 172 (1-4) :190-216
[3]   Stationary solitons of the fifth order KdV-type. Equations and their stabilization [J].
Dey, B ;
Khare, A ;
Kumar, CN .
PHYSICS LETTERS A, 1996, 223 (06) :449-452
[4]  
Dingemans M.W., 1997, WORLD SCI
[5]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[6]   SOLITARY WAVES WITH DAMPED OSCILLATORY TAILS - AN ANALYSIS OF THE 5TH-ORDER KORTEWEG-DEVRIES EQUATION [J].
GRIMSHAW, R ;
MALOMED, B ;
BENILOV, E .
PHYSICA D, 1994, 77 (04) :473-485
[7]   EXISTENCE OF PERTURBED SOLITARY WAVE SOLUTIONS TO A MODEL EQUATION FOR WATER-WAVES [J].
HUNTER, JK ;
SCHEURLE, J .
PHYSICA D, 1988, 32 (02) :253-268
[8]   Exact Cnoidal Solutions of the Extended KdV Equation [J].
Infeld, E. ;
Karczewska, A. ;
Rowlands, G. ;
Rozmej, P. .
ACTA PHYSICA POLONICA A, 2018, 133 (05) :1191-1199
[9]  
Infeld E., 1990, NONLINEAR WAVES
[10]  
Karczewska A., 2018, Shallow Water WavesExtended Korteweg-de Vries Equations