The rate of convergence in the functional limit theorem for increments of a Brownian motion

被引:13
作者
Gao, FQ [1 ]
Wang, QH
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Hubei Univ, Dept Math, Wuhan 430062, Peoples R China
基金
中国国家自然科学基金;
关键词
Brownian motion; functional limit; rate of convergence;
D O I
10.1016/j.spl.2004.11.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain the rate of convergence of the functional limit for increments of a d-dimensional Brownian motion. As an application of the main result, we get a d-dimensional version of the result on the size of small increments of a Brownian motion. (c) 2004 Published by Elsevier B.V.
引用
收藏
页码:165 / 177
页数:13
相关论文
共 9 条
[1]  
BALDI P, 1990, LECT NOTES MATH, V1444, P193
[2]  
Ciesielski Z., 1962, Trans Am Math Soc, V103, P434, DOI [10.1090/S0002-9947-1962-0143257-8, DOI 10.1090/S0002-9947-1962-0143257-8]
[3]   A RELATION BETWEEN CHUNGS AND STRASSENS LAWS OF THE ITERATED LOGARITHM [J].
CSAKI, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 54 (03) :287-301
[4]  
Csorgo M., 1978, Stochastic Processes & their Applications, V8, P119, DOI 10.1016/0304-4149(78)90001-7
[5]   HOW BIG ARE THE INCREMENTS OF A WIENER PROCESS [J].
CSORGO, M ;
REVESZ, P .
ANNALS OF PROBABILITY, 1979, 7 (04) :731-737
[6]  
Csorgo M., 1981, Probability and Mathematical Statistics: a series of monographs and textbooks
[7]   SMALL DEVIATIONS IN THE FUNCTIONAL CENTRAL LIMIT-THEOREM WITH APPLICATIONS TO FUNCTIONAL LAWS OF THE ITERATED LOGARITHM [J].
DEACOSTA, A .
ANNALS OF PROBABILITY, 1983, 11 (01) :78-101
[8]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[9]   GENERALIZATION OF STRASSEN FUNCTIONAL LAW OF ITERATED LOGARITHM [J].
REVESZ, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (03) :257-264