Entropy production and fluctuation relations for a KPZ interface

被引:15
作者
Barato, A. C. [1 ]
Chetrite, R. [2 ]
Hinrichsen, H. [1 ]
Mukamel, D. [2 ]
机构
[1] Univ Wurzburg, Fak Phys & Astron, D-97074 Wurzburg, Germany
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
关键词
stationary states; current fluctuations; large deviations in nonequilibrium systems; STATISTICAL-MECHANICS; STOCHASTIC DYNAMICS; NETWORK THEORY; STEADY-STATES; THEOREM; GROWTH;
D O I
10.1088/1742-5468/2010/10/P10008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study entropy production and fluctuation relations in the restricted solid-on-solid growth model, which is a microscopic realization of the Kardar-Parisi-Zhang (KPZ) equation. Solving the one-dimensional model exactly on a particular line of the phase diagram we demonstrate that entropy production quantifies the distance from equilibrium. Moreover, as an example of a physically relevant current different from the entropy, we study the symmetry of the large deviation function associated with the interface height. In a special case of a system of length L = 4 we find that the probability distribution of the variation of height has a symmetric large deviation function, displaying a symmetry different from the Gallavotti-Cohen symmetry.
引用
收藏
页数:21
相关论文
共 31 条
[1]   Entropy Production of Cyclic Population Dynamics [J].
Andrae, Benjamin ;
Cremer, Jonas ;
Reichenbach, Tobias ;
Frey, Erwin .
PHYSICAL REVIEW LETTERS, 2010, 104 (21)
[2]   Fluctuation theorem for currents and Schnakenberg network theory [J].
Andrieux, David ;
Gaspard, Pierre .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (01) :107-131
[3]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[4]  
[Anonymous], 2004, Mathematical Theory of Nonequilibrium Steady-States (Lecture Notes in Mathematics)
[5]   Mean-field approximations for the restricted solid-on-solid growth models [J].
Barato, Andre C. ;
de Oliveira, Mario J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) :8205-8217
[6]   Macroscopic fluctuation theory for stationary non-equilibrium states [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :635-675
[7]   Fluctuations in stationary nonequilibrium states of irreversible processes [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40601-1
[8]   Current fluctuations in nonequilibrium diffusive systems: An additivity principle [J].
Bodineau, T ;
Derrida, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :180601-1
[9]   Entropy production in the majority-vote model -: art. no. 057103 [J].
Crochik, L ;
Tomé, T .
PHYSICAL REVIEW E, 2005, 72 (05)
[10]  
DEN HOLLANDER F., 2000, FIELD I MONOGRAPHS